forked from PulseFocusPlatform/PulseFocusPlatform
531 lines
22 KiB
Python
531 lines
22 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
from paddle import ParamAttr
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle.nn.initializer import Normal, Constant
|
|
from ppdet.modeling.layers import ConvNormLayer
|
|
from ppdet.core.workspace import register
|
|
|
|
from six.moves import zip
|
|
import numpy as np
|
|
|
|
__all__ = ['SOLOv2Head']
|
|
|
|
|
|
@register
|
|
class SOLOv2MaskHead(nn.Layer):
|
|
"""
|
|
MaskHead of SOLOv2
|
|
|
|
Args:
|
|
in_channels (int): The channel number of input Tensor.
|
|
out_channels (int): The channel number of output Tensor.
|
|
start_level (int): The position where the input starts.
|
|
end_level (int): The position where the input ends.
|
|
use_dcn_in_tower (bool): Whether to use dcn in tower or not.
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_channels=256,
|
|
mid_channels=128,
|
|
out_channels=256,
|
|
start_level=0,
|
|
end_level=3,
|
|
use_dcn_in_tower=False):
|
|
super(SOLOv2MaskHead, self).__init__()
|
|
assert start_level >= 0 and end_level >= start_level
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.mid_channels = mid_channels
|
|
self.use_dcn_in_tower = use_dcn_in_tower
|
|
self.range_level = end_level - start_level + 1
|
|
# TODO: add DeformConvNorm
|
|
conv_type = [ConvNormLayer]
|
|
self.conv_func = conv_type[0]
|
|
if self.use_dcn_in_tower:
|
|
self.conv_func = conv_type[1]
|
|
self.convs_all_levels = []
|
|
for i in range(start_level, end_level + 1):
|
|
conv_feat_name = 'mask_feat_head.convs_all_levels.{}'.format(i)
|
|
conv_pre_feat = nn.Sequential()
|
|
if i == start_level:
|
|
conv_pre_feat.add_sublayer(
|
|
conv_feat_name + '.conv' + str(i),
|
|
self.conv_func(
|
|
ch_in=self.in_channels,
|
|
ch_out=self.mid_channels,
|
|
filter_size=3,
|
|
stride=1,
|
|
norm_type='gn'))
|
|
self.add_sublayer('conv_pre_feat' + str(i), conv_pre_feat)
|
|
self.convs_all_levels.append(conv_pre_feat)
|
|
else:
|
|
for j in range(i):
|
|
ch_in = 0
|
|
if j == 0:
|
|
ch_in = self.in_channels + 2 if i == end_level else self.in_channels
|
|
else:
|
|
ch_in = self.mid_channels
|
|
conv_pre_feat.add_sublayer(
|
|
conv_feat_name + '.conv' + str(j),
|
|
self.conv_func(
|
|
ch_in=ch_in,
|
|
ch_out=self.mid_channels,
|
|
filter_size=3,
|
|
stride=1,
|
|
norm_type='gn'))
|
|
conv_pre_feat.add_sublayer(
|
|
conv_feat_name + '.conv' + str(j) + 'act', nn.ReLU())
|
|
conv_pre_feat.add_sublayer(
|
|
'upsample' + str(i) + str(j),
|
|
nn.Upsample(
|
|
scale_factor=2, mode='bilinear'))
|
|
self.add_sublayer('conv_pre_feat' + str(i), conv_pre_feat)
|
|
self.convs_all_levels.append(conv_pre_feat)
|
|
|
|
conv_pred_name = 'mask_feat_head.conv_pred.0'
|
|
self.conv_pred = self.add_sublayer(
|
|
conv_pred_name,
|
|
self.conv_func(
|
|
ch_in=self.mid_channels,
|
|
ch_out=self.out_channels,
|
|
filter_size=1,
|
|
stride=1,
|
|
norm_type='gn'))
|
|
|
|
def forward(self, inputs):
|
|
"""
|
|
Get SOLOv2MaskHead output.
|
|
|
|
Args:
|
|
inputs(list[Tensor]): feature map from each necks with shape of [N, C, H, W]
|
|
Returns:
|
|
ins_pred(Tensor): Output of SOLOv2MaskHead head
|
|
"""
|
|
feat_all_level = F.relu(self.convs_all_levels[0](inputs[0]))
|
|
for i in range(1, self.range_level):
|
|
input_p = inputs[i]
|
|
if i == (self.range_level - 1):
|
|
input_feat = input_p
|
|
x_range = paddle.linspace(
|
|
-1, 1, paddle.shape(input_feat)[-1], dtype='float32')
|
|
y_range = paddle.linspace(
|
|
-1, 1, paddle.shape(input_feat)[-2], dtype='float32')
|
|
y, x = paddle.meshgrid([y_range, x_range])
|
|
x = paddle.unsqueeze(x, [0, 1])
|
|
y = paddle.unsqueeze(y, [0, 1])
|
|
y = paddle.expand(
|
|
y, shape=[paddle.shape(input_feat)[0], 1, -1, -1])
|
|
x = paddle.expand(
|
|
x, shape=[paddle.shape(input_feat)[0], 1, -1, -1])
|
|
coord_feat = paddle.concat([x, y], axis=1)
|
|
input_p = paddle.concat([input_p, coord_feat], axis=1)
|
|
feat_all_level = paddle.add(feat_all_level,
|
|
self.convs_all_levels[i](input_p))
|
|
ins_pred = F.relu(self.conv_pred(feat_all_level))
|
|
|
|
return ins_pred
|
|
|
|
|
|
@register
|
|
class SOLOv2Head(nn.Layer):
|
|
"""
|
|
Head block for SOLOv2 network
|
|
|
|
Args:
|
|
num_classes (int): Number of output classes.
|
|
in_channels (int): Number of input channels.
|
|
seg_feat_channels (int): Num_filters of kernel & categroy branch convolution operation.
|
|
stacked_convs (int): Times of convolution operation.
|
|
num_grids (list[int]): List of feature map grids size.
|
|
kernel_out_channels (int): Number of output channels in kernel branch.
|
|
dcn_v2_stages (list): Which stage use dcn v2 in tower. It is between [0, stacked_convs).
|
|
segm_strides (list[int]): List of segmentation area stride.
|
|
solov2_loss (object): SOLOv2Loss instance.
|
|
score_threshold (float): Threshold of categroy score.
|
|
mask_nms (object): MaskMatrixNMS instance.
|
|
"""
|
|
__inject__ = ['solov2_loss', 'mask_nms']
|
|
__shared__ = ['num_classes']
|
|
|
|
def __init__(self,
|
|
num_classes=80,
|
|
in_channels=256,
|
|
seg_feat_channels=256,
|
|
stacked_convs=4,
|
|
num_grids=[40, 36, 24, 16, 12],
|
|
kernel_out_channels=256,
|
|
dcn_v2_stages=[],
|
|
segm_strides=[8, 8, 16, 32, 32],
|
|
solov2_loss=None,
|
|
score_threshold=0.1,
|
|
mask_threshold=0.5,
|
|
mask_nms=None):
|
|
super(SOLOv2Head, self).__init__()
|
|
self.num_classes = num_classes
|
|
self.in_channels = in_channels
|
|
self.seg_num_grids = num_grids
|
|
self.cate_out_channels = self.num_classes
|
|
self.seg_feat_channels = seg_feat_channels
|
|
self.stacked_convs = stacked_convs
|
|
self.kernel_out_channels = kernel_out_channels
|
|
self.dcn_v2_stages = dcn_v2_stages
|
|
self.segm_strides = segm_strides
|
|
self.solov2_loss = solov2_loss
|
|
self.mask_nms = mask_nms
|
|
self.score_threshold = score_threshold
|
|
self.mask_threshold = mask_threshold
|
|
|
|
conv_type = [ConvNormLayer]
|
|
self.conv_func = conv_type[0]
|
|
self.kernel_pred_convs = []
|
|
self.cate_pred_convs = []
|
|
for i in range(self.stacked_convs):
|
|
if i in self.dcn_v2_stages:
|
|
self.conv_func = conv_type[1]
|
|
ch_in = self.in_channels + 2 if i == 0 else self.seg_feat_channels
|
|
kernel_conv = self.add_sublayer(
|
|
'bbox_head.kernel_convs.' + str(i),
|
|
self.conv_func(
|
|
ch_in=ch_in,
|
|
ch_out=self.seg_feat_channels,
|
|
filter_size=3,
|
|
stride=1,
|
|
norm_type='gn'))
|
|
self.kernel_pred_convs.append(kernel_conv)
|
|
ch_in = self.in_channels if i == 0 else self.seg_feat_channels
|
|
cate_conv = self.add_sublayer(
|
|
'bbox_head.cate_convs.' + str(i),
|
|
self.conv_func(
|
|
ch_in=ch_in,
|
|
ch_out=self.seg_feat_channels,
|
|
filter_size=3,
|
|
stride=1,
|
|
norm_type='gn'))
|
|
self.cate_pred_convs.append(cate_conv)
|
|
|
|
self.solo_kernel = self.add_sublayer(
|
|
'bbox_head.solo_kernel',
|
|
nn.Conv2D(
|
|
self.seg_feat_channels,
|
|
self.kernel_out_channels,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
weight_attr=ParamAttr(initializer=Normal(
|
|
mean=0., std=0.01)),
|
|
bias_attr=True))
|
|
self.solo_cate = self.add_sublayer(
|
|
'bbox_head.solo_cate',
|
|
nn.Conv2D(
|
|
self.seg_feat_channels,
|
|
self.cate_out_channels,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
weight_attr=ParamAttr(initializer=Normal(
|
|
mean=0., std=0.01)),
|
|
bias_attr=ParamAttr(initializer=Constant(
|
|
value=float(-np.log((1 - 0.01) / 0.01))))))
|
|
|
|
def _points_nms(self, heat, kernel_size=2):
|
|
hmax = F.max_pool2d(heat, kernel_size=kernel_size, stride=1, padding=1)
|
|
keep = paddle.cast((hmax[:, :, :-1, :-1] == heat), 'float32')
|
|
return heat * keep
|
|
|
|
def _split_feats(self, feats):
|
|
return (F.interpolate(
|
|
feats[0],
|
|
scale_factor=0.5,
|
|
align_corners=False,
|
|
align_mode=0,
|
|
mode='bilinear'), feats[1], feats[2], feats[3], F.interpolate(
|
|
feats[4],
|
|
size=paddle.shape(feats[3])[-2:],
|
|
mode='bilinear',
|
|
align_corners=False,
|
|
align_mode=0))
|
|
|
|
def forward(self, input):
|
|
"""
|
|
Get SOLOv2 head output
|
|
|
|
Args:
|
|
input (list): List of Tensors, output of backbone or neck stages
|
|
Returns:
|
|
cate_pred_list (list): Tensors of each category branch layer
|
|
kernel_pred_list (list): Tensors of each kernel branch layer
|
|
"""
|
|
feats = self._split_feats(input)
|
|
cate_pred_list = []
|
|
kernel_pred_list = []
|
|
for idx in range(len(self.seg_num_grids)):
|
|
cate_pred, kernel_pred = self._get_output_single(feats[idx], idx)
|
|
cate_pred_list.append(cate_pred)
|
|
kernel_pred_list.append(kernel_pred)
|
|
|
|
return cate_pred_list, kernel_pred_list
|
|
|
|
def _get_output_single(self, input, idx):
|
|
ins_kernel_feat = input
|
|
# CoordConv
|
|
x_range = paddle.linspace(
|
|
-1, 1, paddle.shape(ins_kernel_feat)[-1], dtype='float32')
|
|
y_range = paddle.linspace(
|
|
-1, 1, paddle.shape(ins_kernel_feat)[-2], dtype='float32')
|
|
y, x = paddle.meshgrid([y_range, x_range])
|
|
x = paddle.unsqueeze(x, [0, 1])
|
|
y = paddle.unsqueeze(y, [0, 1])
|
|
y = paddle.expand(
|
|
y, shape=[paddle.shape(ins_kernel_feat)[0], 1, -1, -1])
|
|
x = paddle.expand(
|
|
x, shape=[paddle.shape(ins_kernel_feat)[0], 1, -1, -1])
|
|
coord_feat = paddle.concat([x, y], axis=1)
|
|
ins_kernel_feat = paddle.concat([ins_kernel_feat, coord_feat], axis=1)
|
|
|
|
# kernel branch
|
|
kernel_feat = ins_kernel_feat
|
|
seg_num_grid = self.seg_num_grids[idx]
|
|
kernel_feat = F.interpolate(
|
|
kernel_feat,
|
|
size=[seg_num_grid, seg_num_grid],
|
|
mode='bilinear',
|
|
align_corners=False,
|
|
align_mode=0)
|
|
cate_feat = kernel_feat[:, :-2, :, :]
|
|
|
|
for kernel_layer in self.kernel_pred_convs:
|
|
kernel_feat = F.relu(kernel_layer(kernel_feat))
|
|
kernel_pred = self.solo_kernel(kernel_feat)
|
|
# cate branch
|
|
for cate_layer in self.cate_pred_convs:
|
|
cate_feat = F.relu(cate_layer(cate_feat))
|
|
cate_pred = self.solo_cate(cate_feat)
|
|
|
|
if not self.training:
|
|
cate_pred = self._points_nms(F.sigmoid(cate_pred), kernel_size=2)
|
|
cate_pred = paddle.transpose(cate_pred, [0, 2, 3, 1])
|
|
return cate_pred, kernel_pred
|
|
|
|
def get_loss(self, cate_preds, kernel_preds, ins_pred, ins_labels,
|
|
cate_labels, grid_order_list, fg_num):
|
|
"""
|
|
Get loss of network of SOLOv2.
|
|
|
|
Args:
|
|
cate_preds (list): Tensor list of categroy branch output.
|
|
kernel_preds (list): Tensor list of kernel branch output.
|
|
ins_pred (list): Tensor list of instance branch output.
|
|
ins_labels (list): List of instance labels pre batch.
|
|
cate_labels (list): List of categroy labels pre batch.
|
|
grid_order_list (list): List of index in pre grid.
|
|
fg_num (int): Number of positive samples in a mini-batch.
|
|
Returns:
|
|
loss_ins (Tensor): The instance loss Tensor of SOLOv2 network.
|
|
loss_cate (Tensor): The category loss Tensor of SOLOv2 network.
|
|
"""
|
|
batch_size = paddle.shape(grid_order_list[0])[0]
|
|
ins_pred_list = []
|
|
for kernel_preds_level, grid_orders_level in zip(kernel_preds,
|
|
grid_order_list):
|
|
if grid_orders_level.shape[1] == 0:
|
|
ins_pred_list.append(None)
|
|
continue
|
|
grid_orders_level = paddle.reshape(grid_orders_level, [-1])
|
|
reshape_pred = paddle.reshape(
|
|
kernel_preds_level,
|
|
shape=(paddle.shape(kernel_preds_level)[0],
|
|
paddle.shape(kernel_preds_level)[1], -1))
|
|
reshape_pred = paddle.transpose(reshape_pred, [0, 2, 1])
|
|
reshape_pred = paddle.reshape(
|
|
reshape_pred, shape=(-1, paddle.shape(reshape_pred)[2]))
|
|
gathered_pred = paddle.gather(reshape_pred, index=grid_orders_level)
|
|
gathered_pred = paddle.reshape(
|
|
gathered_pred,
|
|
shape=[batch_size, -1, paddle.shape(gathered_pred)[1]])
|
|
cur_ins_pred = ins_pred
|
|
cur_ins_pred = paddle.reshape(
|
|
cur_ins_pred,
|
|
shape=(paddle.shape(cur_ins_pred)[0],
|
|
paddle.shape(cur_ins_pred)[1], -1))
|
|
ins_pred_conv = paddle.matmul(gathered_pred, cur_ins_pred)
|
|
cur_ins_pred = paddle.reshape(
|
|
ins_pred_conv,
|
|
shape=(-1, paddle.shape(ins_pred)[-2],
|
|
paddle.shape(ins_pred)[-1]))
|
|
ins_pred_list.append(cur_ins_pred)
|
|
|
|
num_ins = paddle.sum(fg_num)
|
|
cate_preds = [
|
|
paddle.reshape(
|
|
paddle.transpose(cate_pred, [0, 2, 3, 1]),
|
|
shape=(-1, self.cate_out_channels)) for cate_pred in cate_preds
|
|
]
|
|
flatten_cate_preds = paddle.concat(cate_preds)
|
|
new_cate_labels = []
|
|
for cate_label in cate_labels:
|
|
new_cate_labels.append(paddle.reshape(cate_label, shape=[-1]))
|
|
cate_labels = paddle.concat(new_cate_labels)
|
|
|
|
loss_ins, loss_cate = self.solov2_loss(
|
|
ins_pred_list, ins_labels, flatten_cate_preds, cate_labels, num_ins)
|
|
|
|
return {'loss_ins': loss_ins, 'loss_cate': loss_cate}
|
|
|
|
def get_prediction(self, cate_preds, kernel_preds, seg_pred, im_shape,
|
|
scale_factor):
|
|
"""
|
|
Get prediction result of SOLOv2 network
|
|
|
|
Args:
|
|
cate_preds (list): List of Variables, output of categroy branch.
|
|
kernel_preds (list): List of Variables, output of kernel branch.
|
|
seg_pred (list): List of Variables, output of mask head stages.
|
|
im_shape (Variables): [h, w] for input images.
|
|
scale_factor (Variables): [scale, scale] for input images.
|
|
Returns:
|
|
seg_masks (Tensor): The prediction segmentation.
|
|
cate_labels (Tensor): The prediction categroy label of each segmentation.
|
|
seg_masks (Tensor): The prediction score of each segmentation.
|
|
"""
|
|
num_levels = len(cate_preds)
|
|
featmap_size = paddle.shape(seg_pred)[-2:]
|
|
seg_masks_list = []
|
|
cate_labels_list = []
|
|
cate_scores_list = []
|
|
cate_preds = [cate_pred * 1.0 for cate_pred in cate_preds]
|
|
kernel_preds = [kernel_pred * 1.0 for kernel_pred in kernel_preds]
|
|
# Currently only supports batch size == 1
|
|
for idx in range(1):
|
|
cate_pred_list = [
|
|
paddle.reshape(
|
|
cate_preds[i][idx], shape=(-1, self.cate_out_channels))
|
|
for i in range(num_levels)
|
|
]
|
|
seg_pred_list = seg_pred
|
|
kernel_pred_list = [
|
|
paddle.reshape(
|
|
paddle.transpose(kernel_preds[i][idx], [1, 2, 0]),
|
|
shape=(-1, self.kernel_out_channels))
|
|
for i in range(num_levels)
|
|
]
|
|
cate_pred_list = paddle.concat(cate_pred_list, axis=0)
|
|
kernel_pred_list = paddle.concat(kernel_pred_list, axis=0)
|
|
|
|
seg_masks, cate_labels, cate_scores = self.get_seg_single(
|
|
cate_pred_list, seg_pred_list, kernel_pred_list, featmap_size,
|
|
im_shape[idx], scale_factor[idx][0])
|
|
bbox_num = paddle.shape(cate_labels)[0]
|
|
return seg_masks, cate_labels, cate_scores, bbox_num
|
|
|
|
def get_seg_single(self, cate_preds, seg_preds, kernel_preds, featmap_size,
|
|
im_shape, scale_factor):
|
|
h = paddle.cast(im_shape[0], 'int32')[0]
|
|
w = paddle.cast(im_shape[1], 'int32')[0]
|
|
upsampled_size_out = [featmap_size[0] * 4, featmap_size[1] * 4]
|
|
|
|
y = paddle.zeros(shape=paddle.shape(cate_preds), dtype='float32')
|
|
inds = paddle.where(cate_preds > self.score_threshold, cate_preds, y)
|
|
inds = paddle.nonzero(inds)
|
|
cate_preds = paddle.reshape(cate_preds, shape=[-1])
|
|
# Prevent empty and increase fake data
|
|
ind_a = paddle.cast(paddle.shape(kernel_preds)[0], 'int64')
|
|
ind_b = paddle.zeros(shape=[1], dtype='int64')
|
|
inds_end = paddle.unsqueeze(paddle.concat([ind_a, ind_b]), 0)
|
|
inds = paddle.concat([inds, inds_end])
|
|
kernel_preds_end = paddle.ones(
|
|
shape=[1, self.kernel_out_channels], dtype='float32')
|
|
kernel_preds = paddle.concat([kernel_preds, kernel_preds_end])
|
|
cate_preds = paddle.concat(
|
|
[cate_preds, paddle.zeros(
|
|
shape=[1], dtype='float32')])
|
|
|
|
# cate_labels & kernel_preds
|
|
cate_labels = inds[:, 1]
|
|
kernel_preds = paddle.gather(kernel_preds, index=inds[:, 0])
|
|
cate_score_idx = paddle.add(inds[:, 0] * 80, cate_labels)
|
|
cate_scores = paddle.gather(cate_preds, index=cate_score_idx)
|
|
|
|
size_trans = np.power(self.seg_num_grids, 2)
|
|
strides = []
|
|
for _ind in range(len(self.segm_strides)):
|
|
strides.append(
|
|
paddle.full(
|
|
shape=[int(size_trans[_ind])],
|
|
fill_value=self.segm_strides[_ind],
|
|
dtype="int32"))
|
|
strides = paddle.concat(strides)
|
|
strides = paddle.gather(strides, index=inds[:, 0])
|
|
|
|
# mask encoding.
|
|
kernel_preds = paddle.unsqueeze(kernel_preds, [2, 3])
|
|
seg_preds = F.conv2d(seg_preds, kernel_preds)
|
|
seg_preds = F.sigmoid(paddle.squeeze(seg_preds, [0]))
|
|
seg_masks = seg_preds > self.mask_threshold
|
|
seg_masks = paddle.cast(seg_masks, 'float32')
|
|
sum_masks = paddle.sum(seg_masks, axis=[1, 2])
|
|
|
|
y = paddle.zeros(shape=paddle.shape(sum_masks), dtype='float32')
|
|
keep = paddle.where(sum_masks > strides, sum_masks, y)
|
|
keep = paddle.nonzero(keep)
|
|
keep = paddle.squeeze(keep, axis=[1])
|
|
# Prevent empty and increase fake data
|
|
keep_other = paddle.concat(
|
|
[keep, paddle.cast(paddle.shape(sum_masks)[0] - 1, 'int64')])
|
|
keep_scores = paddle.concat(
|
|
[keep, paddle.cast(paddle.shape(sum_masks)[0], 'int64')])
|
|
cate_scores_end = paddle.zeros(shape=[1], dtype='float32')
|
|
cate_scores = paddle.concat([cate_scores, cate_scores_end])
|
|
|
|
seg_masks = paddle.gather(seg_masks, index=keep_other)
|
|
seg_preds = paddle.gather(seg_preds, index=keep_other)
|
|
sum_masks = paddle.gather(sum_masks, index=keep_other)
|
|
cate_labels = paddle.gather(cate_labels, index=keep_other)
|
|
cate_scores = paddle.gather(cate_scores, index=keep_scores)
|
|
|
|
# mask scoring.
|
|
seg_mul = paddle.cast(seg_preds * seg_masks, 'float32')
|
|
seg_scores = paddle.sum(seg_mul, axis=[1, 2]) / sum_masks
|
|
cate_scores *= seg_scores
|
|
# Matrix NMS
|
|
seg_preds, cate_scores, cate_labels = self.mask_nms(
|
|
seg_preds, seg_masks, cate_labels, cate_scores, sum_masks=sum_masks)
|
|
ori_shape = im_shape[:2] / scale_factor + 0.5
|
|
ori_shape = paddle.cast(ori_shape, 'int32')
|
|
seg_preds = F.interpolate(
|
|
paddle.unsqueeze(seg_preds, 0),
|
|
size=upsampled_size_out,
|
|
mode='bilinear',
|
|
align_corners=False,
|
|
align_mode=0)
|
|
seg_preds = paddle.slice(
|
|
seg_preds, axes=[2, 3], starts=[0, 0], ends=[h, w])
|
|
seg_masks = paddle.squeeze(
|
|
F.interpolate(
|
|
seg_preds,
|
|
size=ori_shape[:2],
|
|
mode='bilinear',
|
|
align_corners=False,
|
|
align_mode=0),
|
|
axis=[0])
|
|
seg_masks = paddle.cast(seg_masks > self.mask_threshold, 'uint8')
|
|
return seg_masks, cate_labels, cate_scores
|