forked from PulseFocusPlatform/PulseFocusPlatform
176 lines
6.2 KiB
Python
176 lines
6.2 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from ppdet.core.workspace import register
|
|
from paddle.regularizer import L2Decay
|
|
from paddle import ParamAttr
|
|
|
|
from ..layers import AnchorGeneratorSSD
|
|
|
|
|
|
class SepConvLayer(nn.Layer):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size=3,
|
|
padding=1,
|
|
conv_decay=0):
|
|
super(SepConvLayer, self).__init__()
|
|
self.dw_conv = nn.Conv2D(
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
kernel_size=kernel_size,
|
|
stride=1,
|
|
padding=padding,
|
|
groups=in_channels,
|
|
weight_attr=ParamAttr(regularizer=L2Decay(conv_decay)),
|
|
bias_attr=False)
|
|
|
|
self.bn = nn.BatchNorm2D(
|
|
in_channels,
|
|
weight_attr=ParamAttr(regularizer=L2Decay(0.)),
|
|
bias_attr=ParamAttr(regularizer=L2Decay(0.)))
|
|
|
|
self.pw_conv = nn.Conv2D(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
weight_attr=ParamAttr(regularizer=L2Decay(conv_decay)),
|
|
bias_attr=False)
|
|
|
|
def forward(self, x):
|
|
x = self.dw_conv(x)
|
|
x = F.relu6(self.bn(x))
|
|
x = self.pw_conv(x)
|
|
return x
|
|
|
|
|
|
@register
|
|
class SSDHead(nn.Layer):
|
|
"""
|
|
SSDHead
|
|
|
|
Args:
|
|
num_classes (int): Number of classes
|
|
in_channels (list): Number of channels per input feature
|
|
anchor_generator (dict): Configuration of 'AnchorGeneratorSSD' instance
|
|
kernel_size (int): Conv kernel size
|
|
padding (int): Conv padding
|
|
use_sepconv (bool): Use SepConvLayer if true
|
|
conv_decay (float): Conv regularization coeff
|
|
loss (object): 'SSDLoss' instance
|
|
"""
|
|
|
|
__shared__ = ['num_classes']
|
|
__inject__ = ['anchor_generator', 'loss']
|
|
|
|
def __init__(self,
|
|
num_classes=80,
|
|
in_channels=(512, 1024, 512, 256, 256, 256),
|
|
anchor_generator=AnchorGeneratorSSD().__dict__,
|
|
kernel_size=3,
|
|
padding=1,
|
|
use_sepconv=False,
|
|
conv_decay=0.,
|
|
loss='SSDLoss'):
|
|
super(SSDHead, self).__init__()
|
|
# add background class
|
|
self.num_classes = num_classes + 1
|
|
self.in_channels = in_channels
|
|
self.anchor_generator = anchor_generator
|
|
self.loss = loss
|
|
|
|
if isinstance(anchor_generator, dict):
|
|
self.anchor_generator = AnchorGeneratorSSD(**anchor_generator)
|
|
|
|
self.num_priors = self.anchor_generator.num_priors
|
|
self.box_convs = []
|
|
self.score_convs = []
|
|
for i, num_prior in enumerate(self.num_priors):
|
|
box_conv_name = "boxes{}".format(i)
|
|
if not use_sepconv:
|
|
box_conv = self.add_sublayer(
|
|
box_conv_name,
|
|
nn.Conv2D(
|
|
in_channels=in_channels[i],
|
|
out_channels=num_prior * 4,
|
|
kernel_size=kernel_size,
|
|
padding=padding))
|
|
else:
|
|
box_conv = self.add_sublayer(
|
|
box_conv_name,
|
|
SepConvLayer(
|
|
in_channels=in_channels[i],
|
|
out_channels=num_prior * 4,
|
|
kernel_size=kernel_size,
|
|
padding=padding,
|
|
conv_decay=conv_decay))
|
|
self.box_convs.append(box_conv)
|
|
|
|
score_conv_name = "scores{}".format(i)
|
|
if not use_sepconv:
|
|
score_conv = self.add_sublayer(
|
|
score_conv_name,
|
|
nn.Conv2D(
|
|
in_channels=in_channels[i],
|
|
out_channels=num_prior * self.num_classes,
|
|
kernel_size=kernel_size,
|
|
padding=padding))
|
|
else:
|
|
score_conv = self.add_sublayer(
|
|
score_conv_name,
|
|
SepConvLayer(
|
|
in_channels=in_channels[i],
|
|
out_channels=num_prior * self.num_classes,
|
|
kernel_size=kernel_size,
|
|
padding=padding,
|
|
conv_decay=conv_decay))
|
|
self.score_convs.append(score_conv)
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg, input_shape):
|
|
return {'in_channels': [i.channels for i in input_shape], }
|
|
|
|
def forward(self, feats, image, gt_bbox=None, gt_class=None):
|
|
box_preds = []
|
|
cls_scores = []
|
|
prior_boxes = []
|
|
for feat, box_conv, score_conv in zip(feats, self.box_convs,
|
|
self.score_convs):
|
|
box_pred = box_conv(feat)
|
|
box_pred = paddle.transpose(box_pred, [0, 2, 3, 1])
|
|
box_pred = paddle.reshape(box_pred, [0, -1, 4])
|
|
box_preds.append(box_pred)
|
|
|
|
cls_score = score_conv(feat)
|
|
cls_score = paddle.transpose(cls_score, [0, 2, 3, 1])
|
|
cls_score = paddle.reshape(cls_score, [0, -1, self.num_classes])
|
|
cls_scores.append(cls_score)
|
|
|
|
prior_boxes = self.anchor_generator(feats, image)
|
|
|
|
if self.training:
|
|
return self.get_loss(box_preds, cls_scores, gt_bbox, gt_class,
|
|
prior_boxes)
|
|
else:
|
|
return (box_preds, cls_scores), prior_boxes
|
|
|
|
def get_loss(self, boxes, scores, gt_bbox, gt_class, prior_boxes):
|
|
return self.loss(boxes, scores, gt_bbox, gt_class, prior_boxes)
|