PulseFocusPlatform/ppdet/modeling/heads/ttf_head.py

310 lines
12 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Constant, Normal
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register
from ppdet.modeling.layers import DeformableConvV2, LiteConv
import numpy as np
@register
class HMHead(nn.Layer):
"""
Args:
ch_in (int): The channel number of input Tensor.
ch_out (int): The channel number of output Tensor.
num_classes (int): Number of classes.
conv_num (int): The convolution number of hm_feat.
dcn_head(bool): whether use dcn in head. False by default.
lite_head(bool): whether use lite version. False by default.
norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional.
bn by default
Return:
Heatmap head output
"""
__shared__ = ['num_classes', 'norm_type']
def __init__(
self,
ch_in,
ch_out=128,
num_classes=80,
conv_num=2,
dcn_head=False,
lite_head=False,
norm_type='bn', ):
super(HMHead, self).__init__()
head_conv = nn.Sequential()
for i in range(conv_num):
name = 'conv.{}'.format(i)
if lite_head:
lite_name = 'hm.' + name
head_conv.add_sublayer(
lite_name,
LiteConv(
in_channels=ch_in if i == 0 else ch_out,
out_channels=ch_out,
norm_type=norm_type))
head_conv.add_sublayer(lite_name + '.act', nn.ReLU6())
else:
if dcn_head:
head_conv.add_sublayer(
name,
DeformableConvV2(
in_channels=ch_in if i == 0 else ch_out,
out_channels=ch_out,
kernel_size=3,
weight_attr=ParamAttr(initializer=Normal(0, 0.01))))
else:
head_conv.add_sublayer(
name,
nn.Conv2D(
in_channels=ch_in if i == 0 else ch_out,
out_channels=ch_out,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
bias_attr=ParamAttr(
learning_rate=2., regularizer=L2Decay(0.))))
head_conv.add_sublayer(name + '.act', nn.ReLU())
self.feat = head_conv
bias_init = float(-np.log((1 - 0.01) / 0.01))
self.head = nn.Conv2D(
in_channels=ch_out,
out_channels=num_classes,
kernel_size=1,
weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
bias_attr=ParamAttr(
learning_rate=2.,
regularizer=L2Decay(0.),
initializer=Constant(bias_init)))
def forward(self, feat):
out = self.feat(feat)
out = self.head(out)
return out
@register
class WHHead(nn.Layer):
"""
Args:
ch_in (int): The channel number of input Tensor.
ch_out (int): The channel number of output Tensor.
conv_num (int): The convolution number of wh_feat.
dcn_head(bool): whether use dcn in head. False by default.
lite_head(bool): whether use lite version. False by default.
norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional.
bn by default
Return:
Width & Height head output
"""
__shared__ = ['norm_type']
def __init__(self,
ch_in,
ch_out=64,
conv_num=2,
dcn_head=False,
lite_head=False,
norm_type='bn'):
super(WHHead, self).__init__()
head_conv = nn.Sequential()
for i in range(conv_num):
name = 'conv.{}'.format(i)
if lite_head:
lite_name = 'wh.' + name
head_conv.add_sublayer(
lite_name,
LiteConv(
in_channels=ch_in if i == 0 else ch_out,
out_channels=ch_out,
norm_type=norm_type))
head_conv.add_sublayer(lite_name + '.act', nn.ReLU6())
else:
if dcn_head:
head_conv.add_sublayer(
name,
DeformableConvV2(
in_channels=ch_in if i == 0 else ch_out,
out_channels=ch_out,
kernel_size=3,
weight_attr=ParamAttr(initializer=Normal(0, 0.01))))
else:
head_conv.add_sublayer(
name,
nn.Conv2D(
in_channels=ch_in if i == 0 else ch_out,
out_channels=ch_out,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
bias_attr=ParamAttr(
learning_rate=2., regularizer=L2Decay(0.))))
head_conv.add_sublayer(name + '.act', nn.ReLU())
self.feat = head_conv
self.head = nn.Conv2D(
in_channels=ch_out,
out_channels=4,
kernel_size=1,
weight_attr=ParamAttr(initializer=Normal(0, 0.001)),
bias_attr=ParamAttr(
learning_rate=2., regularizer=L2Decay(0.)))
def forward(self, feat):
out = self.feat(feat)
out = self.head(out)
out = F.relu(out)
return out
@register
class TTFHead(nn.Layer):
"""
TTFHead
Args:
in_channels (int): the channel number of input to TTFHead.
num_classes (int): the number of classes, 80 by default.
hm_head_planes (int): the channel number in heatmap head,
128 by default.
wh_head_planes (int): the channel number in width & height head,
64 by default.
hm_head_conv_num (int): the number of convolution in heatmap head,
2 by default.
wh_head_conv_num (int): the number of convolution in width & height
head, 2 by default.
hm_loss (object): Instance of 'CTFocalLoss'.
wh_loss (object): Instance of 'GIoULoss'.
wh_offset_base (float): the base offset of width and height,
16.0 by default.
down_ratio (int): the actual down_ratio is calculated by base_down_ratio
(default 16) and the number of upsample layers.
lite_head(bool): whether use lite version. False by default.
norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional.
bn by default
ags_module(bool): whether use AGS module to reweight location feature.
false by default.
"""
__shared__ = ['num_classes', 'down_ratio', 'norm_type']
__inject__ = ['hm_loss', 'wh_loss']
def __init__(self,
in_channels,
num_classes=80,
hm_head_planes=128,
wh_head_planes=64,
hm_head_conv_num=2,
wh_head_conv_num=2,
hm_loss='CTFocalLoss',
wh_loss='GIoULoss',
wh_offset_base=16.,
down_ratio=4,
dcn_head=False,
lite_head=False,
norm_type='bn',
ags_module=False):
super(TTFHead, self).__init__()
self.in_channels = in_channels
self.hm_head = HMHead(in_channels, hm_head_planes, num_classes,
hm_head_conv_num, dcn_head, lite_head, norm_type)
self.wh_head = WHHead(in_channels, wh_head_planes, wh_head_conv_num,
dcn_head, lite_head, norm_type)
self.hm_loss = hm_loss
self.wh_loss = wh_loss
self.wh_offset_base = wh_offset_base
self.down_ratio = down_ratio
self.ags_module = ags_module
@classmethod
def from_config(cls, cfg, input_shape):
if isinstance(input_shape, (list, tuple)):
input_shape = input_shape[0]
return {'in_channels': input_shape.channels, }
def forward(self, feats):
hm = self.hm_head(feats)
wh = self.wh_head(feats) * self.wh_offset_base
return hm, wh
def filter_box_by_weight(self, pred, target, weight):
"""
Filter out boxes where ttf_reg_weight is 0, only keep positive samples.
"""
index = paddle.nonzero(weight > 0)
index.stop_gradient = True
weight = paddle.gather_nd(weight, index)
pred = paddle.gather_nd(pred, index)
target = paddle.gather_nd(target, index)
return pred, target, weight
def filter_loc_by_weight(self, score, weight):
index = paddle.nonzero(weight > 0)
index.stop_gradient = True
score = paddle.gather_nd(score, index)
return score
def get_loss(self, pred_hm, pred_wh, target_hm, box_target, target_weight):
pred_hm = paddle.clip(F.sigmoid(pred_hm), 1e-4, 1 - 1e-4)
hm_loss = self.hm_loss(pred_hm, target_hm)
H, W = target_hm.shape[2:]
mask = paddle.reshape(target_weight, [-1, H, W])
avg_factor = paddle.sum(mask) + 1e-4
base_step = self.down_ratio
shifts_x = paddle.arange(0, W * base_step, base_step, dtype='int32')
shifts_y = paddle.arange(0, H * base_step, base_step, dtype='int32')
shift_y, shift_x = paddle.tensor.meshgrid([shifts_y, shifts_x])
base_loc = paddle.stack([shift_x, shift_y], axis=0)
base_loc.stop_gradient = True
pred_boxes = paddle.concat(
[0 - pred_wh[:, 0:2, :, :] + base_loc, pred_wh[:, 2:4] + base_loc],
axis=1)
pred_boxes = paddle.transpose(pred_boxes, [0, 2, 3, 1])
boxes = paddle.transpose(box_target, [0, 2, 3, 1])
boxes.stop_gradient = True
if self.ags_module:
pred_hm_max = paddle.max(pred_hm, axis=1, keepdim=True)
pred_hm_max_softmax = F.softmax(pred_hm_max, axis=1)
pred_hm_max_softmax = paddle.transpose(pred_hm_max_softmax,
[0, 2, 3, 1])
pred_hm_max_softmax = self.filter_loc_by_weight(pred_hm_max_softmax,
mask)
else:
pred_hm_max_softmax = None
pred_boxes, boxes, mask = self.filter_box_by_weight(pred_boxes, boxes,
mask)
mask.stop_gradient = True
wh_loss = self.wh_loss(
pred_boxes,
boxes,
iou_weight=mask.unsqueeze(1),
loc_reweight=pred_hm_max_softmax)
wh_loss = wh_loss / avg_factor
ttf_loss = {'hm_loss': hm_loss, 'wh_loss': wh_loss}
return ttf_loss