PulseFocusPlatform/ppdet/modeling/necks/hrfpn.py

131 lines
4.3 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
from paddle import ParamAttr
import paddle.nn as nn
from ppdet.core.workspace import register
from ..shape_spec import ShapeSpec
__all__ = ['HRFPN']
@register
class HRFPN(nn.Layer):
"""
Args:
in_channels (list): number of input feature channels from backbone
out_channel (int): number of output feature channels
share_conv (bool): whether to share conv for different layers' reduction
extra_stage (int): add extra stage for returning HRFPN fpn_feats
spatial_scales (list): feature map scaling factor
"""
def __init__(self,
in_channels=[18, 36, 72, 144],
out_channel=256,
share_conv=False,
extra_stage=1,
spatial_scales=[1. / 4, 1. / 8, 1. / 16, 1. / 32]):
super(HRFPN, self).__init__()
in_channel = sum(in_channels)
self.in_channel = in_channel
self.out_channel = out_channel
self.share_conv = share_conv
for i in range(extra_stage):
spatial_scales = spatial_scales + [spatial_scales[-1] / 2.]
self.spatial_scales = spatial_scales
self.num_out = len(self.spatial_scales)
self.reduction = nn.Conv2D(
in_channels=in_channel,
out_channels=out_channel,
kernel_size=1,
weight_attr=ParamAttr(name='hrfpn_reduction_weights'),
bias_attr=False)
if share_conv:
self.fpn_conv = nn.Conv2D(
in_channels=out_channel,
out_channels=out_channel,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(name='fpn_conv_weights'),
bias_attr=False)
else:
self.fpn_conv = []
for i in range(self.num_out):
conv_name = "fpn_conv_" + str(i)
conv = self.add_sublayer(
conv_name,
nn.Conv2D(
in_channels=out_channel,
out_channels=out_channel,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(name=conv_name + "_weights"),
bias_attr=False))
self.fpn_conv.append(conv)
def forward(self, body_feats):
num_backbone_stages = len(body_feats)
outs = []
outs.append(body_feats[0])
# resize
for i in range(1, num_backbone_stages):
resized = F.interpolate(
body_feats[i], scale_factor=2**i, mode='bilinear')
outs.append(resized)
# concat
out = paddle.concat(outs, axis=1)
assert out.shape[
1] == self.in_channel, 'in_channel should be {}, be received {}'.format(
out.shape[1], self.in_channel)
# reduction
out = self.reduction(out)
# conv
outs = [out]
for i in range(1, self.num_out):
outs.append(F.avg_pool2d(out, kernel_size=2**i, stride=2**i))
outputs = []
for i in range(self.num_out):
conv_func = self.fpn_conv if self.share_conv else self.fpn_conv[i]
conv = conv_func(outs[i])
outputs.append(conv)
fpn_feats = [outputs[k] for k in range(self.num_out)]
return fpn_feats
@classmethod
def from_config(cls, cfg, input_shape):
return {
'in_channels': [i.channels for i in input_shape],
'spatial_scales': [1.0 / i.stride for i in input_shape],
}
@property
def out_shape(self):
return [
ShapeSpec(
channels=self.out_channel, stride=1. / s)
for s in self.spatial_scales
]