PulseFocusPlatform/ppdet/modeling/reid/fairmot_embedding_head.py

116 lines
4.3 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import KaimingUniform, Uniform
from ppdet.core.workspace import register
from ppdet.modeling.heads.centernet_head import ConvLayer
__all__ = ['FairMOTEmbeddingHead']
@register
class FairMOTEmbeddingHead(nn.Layer):
"""
Args:
in_channels (int): the channel number of input to FairMOTEmbeddingHead.
ch_head (int): the channel of features before fed into embedding, 256 by default.
ch_emb (int): the channel of the embedding feature, 128 by default.
num_identifiers (int): the number of identifiers, 14455 by default.
"""
def __init__(self,
in_channels,
ch_head=256,
ch_emb=128,
num_identifiers=14455):
super(FairMOTEmbeddingHead, self).__init__()
self.reid = nn.Sequential(
ConvLayer(
in_channels, ch_head, kernel_size=3, padding=1, bias=True),
nn.ReLU(),
ConvLayer(
ch_head, ch_emb, kernel_size=1, stride=1, padding=0, bias=True))
param_attr = paddle.ParamAttr(initializer=KaimingUniform())
bound = 1 / math.sqrt(ch_emb)
bias_attr = paddle.ParamAttr(initializer=Uniform(-bound, bound))
self.classifier = nn.Linear(
ch_emb,
num_identifiers,
weight_attr=param_attr,
bias_attr=bias_attr)
self.reid_loss = nn.CrossEntropyLoss(ignore_index=-1, reduction='sum')
# When num_identifiers is 1, emb_scale is set as 1
self.emb_scale = math.sqrt(2) * math.log(
num_identifiers - 1) if num_identifiers > 1 else 1
@classmethod
def from_config(cls, cfg, input_shape):
if isinstance(input_shape, (list, tuple)):
input_shape = input_shape[0]
return {'in_channels': input_shape.channels}
def forward(self, feat, inputs):
reid_feat = self.reid(feat)
if self.training:
loss = self.get_loss(reid_feat, inputs)
return loss
else:
reid_feat = F.normalize(reid_feat)
return reid_feat
def get_loss(self, feat, inputs):
index = inputs['index']
mask = inputs['index_mask']
target = inputs['reid']
target = paddle.masked_select(target, mask > 0)
target = paddle.unsqueeze(target, 1)
feat = paddle.transpose(feat, perm=[0, 2, 3, 1])
feat_n, feat_h, feat_w, feat_c = feat.shape
feat = paddle.reshape(feat, shape=[feat_n, -1, feat_c])
index = paddle.unsqueeze(index, 2)
batch_inds = list()
for i in range(feat_n):
batch_ind = paddle.full(
shape=[1, index.shape[1], 1], fill_value=i, dtype='int64')
batch_inds.append(batch_ind)
batch_inds = paddle.concat(batch_inds, axis=0)
index = paddle.concat(x=[batch_inds, index], axis=2)
feat = paddle.gather_nd(feat, index=index)
mask = paddle.unsqueeze(mask, axis=2)
mask = paddle.expand_as(mask, feat)
mask.stop_gradient = True
feat = paddle.masked_select(feat, mask > 0)
feat = paddle.reshape(feat, shape=[-1, feat_c])
feat = F.normalize(feat)
feat = self.emb_scale * feat
logit = self.classifier(feat)
target.stop_gradient = True
loss = self.reid_loss(logit, target)
valid = (target != self.reid_loss.ignore_index)
valid.stop_gradient = True
count = paddle.sum((paddle.cast(valid, dtype=np.int32)))
count.stop_gradient = True
if count > 0:
loss = loss / count
return loss