forked from PulseFocusPlatform/PulseFocusPlatform
63 lines
2.0 KiB
Python
63 lines
2.0 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from . import prune
|
|
from . import quant
|
|
from . import distill
|
|
|
|
from .prune import *
|
|
from .quant import *
|
|
from .distill import *
|
|
|
|
import yaml
|
|
from ppdet.core.workspace import load_config
|
|
from ppdet.utils.checkpoint import load_pretrain_weight
|
|
|
|
|
|
def build_slim_model(cfg, slim_cfg, mode='train'):
|
|
with open(slim_cfg) as f:
|
|
slim_load_cfg = yaml.load(f, Loader=yaml.Loader)
|
|
if mode != 'train' and slim_load_cfg['slim'] == 'Distill':
|
|
return cfg
|
|
|
|
if slim_load_cfg['slim'] == 'Distill':
|
|
model = DistillModel(cfg, slim_cfg)
|
|
cfg['model'] = model
|
|
elif slim_load_cfg['slim'] == 'DistillPrune':
|
|
if mode == 'train':
|
|
model = DistillModel(cfg, slim_cfg)
|
|
pruner = create(cfg.pruner)
|
|
pruner(model.student_model)
|
|
else:
|
|
model = create(cfg.architecture)
|
|
weights = cfg.weights
|
|
load_config(slim_cfg)
|
|
pruner = create(cfg.pruner)
|
|
model = pruner(model)
|
|
load_pretrain_weight(model, weights)
|
|
cfg['model'] = model
|
|
else:
|
|
load_config(slim_cfg)
|
|
model = create(cfg.architecture)
|
|
if mode == 'train':
|
|
load_pretrain_weight(model, cfg.pretrain_weights)
|
|
slim = create(cfg.slim)
|
|
cfg['slim_type'] = cfg.slim
|
|
cfg['model'] = slim(model)
|
|
cfg['slim'] = slim
|
|
if mode != 'train':
|
|
load_pretrain_weight(cfg['model'], cfg.weights)
|
|
|
|
return cfg
|