forked from PulseFocusPlatform/PulseFocusPlatform
208 lines
7.1 KiB
Python
208 lines
7.1 KiB
Python
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import sys
|
|
|
|
# add python path of PadleDetection to sys.path
|
|
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
|
|
if parent_path not in sys.path:
|
|
sys.path.append(parent_path)
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import logging
|
|
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
|
|
logging.basicConfig(level=logging.INFO, format=FORMAT)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
try:
|
|
from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results, json_eval_results
|
|
import ppdet.utils.checkpoint as checkpoint
|
|
from ppdet.utils.check import check_gpu, check_xpu, check_version, check_config, enable_static_mode
|
|
|
|
from ppdet.data.reader import create_reader
|
|
|
|
from ppdet.core.workspace import load_config, merge_config, create
|
|
from ppdet.utils.cli import ArgsParser
|
|
except ImportError as e:
|
|
if sys.argv[0].find('static') >= 0:
|
|
logger.error("Importing ppdet failed when running static model "
|
|
"with error: {}\n"
|
|
"please try:\n"
|
|
"\t1. run static model under PaddleDetection/static "
|
|
"directory\n"
|
|
"\t2. run 'pip uninstall ppdet' to uninstall ppdet "
|
|
"dynamic version firstly.".format(e))
|
|
sys.exit(-1)
|
|
else:
|
|
raise e
|
|
|
|
|
|
def main():
|
|
"""
|
|
Main evaluate function
|
|
"""
|
|
cfg = load_config(FLAGS.config)
|
|
merge_config(FLAGS.opt)
|
|
check_config(cfg)
|
|
# check if set use_gpu=True in paddlepaddle cpu version
|
|
check_gpu(cfg.use_gpu)
|
|
use_xpu = False
|
|
if hasattr(cfg, 'use_xpu'):
|
|
check_xpu(cfg.use_xpu)
|
|
use_xpu = cfg.use_xpu
|
|
# check if paddlepaddle version is satisfied
|
|
check_version()
|
|
|
|
assert not (use_xpu and cfg.use_gpu), \
|
|
'Can not run on both XPU and GPU'
|
|
|
|
main_arch = cfg.architecture
|
|
|
|
multi_scale_test = getattr(cfg, 'MultiScaleTEST', None)
|
|
|
|
# define executor
|
|
if cfg.use_gpu:
|
|
place = fluid.CUDAPlace(0)
|
|
elif use_xpu:
|
|
place = fluid.XPUPlace(0)
|
|
else:
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
|
|
# build program
|
|
model = create(main_arch)
|
|
startup_prog = fluid.Program()
|
|
eval_prog = fluid.Program()
|
|
with fluid.program_guard(eval_prog, startup_prog):
|
|
with fluid.unique_name.guard():
|
|
inputs_def = cfg['EvalReader']['inputs_def']
|
|
feed_vars, loader = model.build_inputs(**inputs_def)
|
|
if multi_scale_test is None:
|
|
fetches = model.eval(feed_vars)
|
|
else:
|
|
fetches = model.eval(feed_vars, multi_scale_test)
|
|
eval_prog = eval_prog.clone(True)
|
|
|
|
reader = create_reader(cfg.EvalReader, devices_num=1)
|
|
# When iterable mode, set set_sample_list_generator(reader, place)
|
|
loader.set_sample_list_generator(reader)
|
|
|
|
dataset = cfg['EvalReader']['dataset']
|
|
|
|
# eval already exists json file
|
|
if FLAGS.json_eval:
|
|
logger.info(
|
|
"In json_eval mode, PaddleDetection will evaluate json files in "
|
|
"output_eval directly. And proposal.json, bbox.json and mask.json "
|
|
"will be detected by default.")
|
|
json_eval_results(
|
|
cfg.metric, json_directory=FLAGS.output_eval, dataset=dataset)
|
|
return
|
|
|
|
compile_program = fluid.CompiledProgram(eval_prog).with_data_parallel()
|
|
if use_xpu:
|
|
compile_program = eval_prog
|
|
|
|
assert cfg.metric != 'OID', "eval process of OID dataset \
|
|
is not supported."
|
|
|
|
if cfg.metric == "WIDERFACE":
|
|
raise ValueError("metric type {} does not support in tools/eval.py, "
|
|
"please use tools/face_eval.py".format(cfg.metric))
|
|
assert cfg.metric in ['COCO', 'VOC'], \
|
|
"unknown metric type {}".format(cfg.metric)
|
|
extra_keys = []
|
|
|
|
if cfg.metric == 'COCO':
|
|
extra_keys = ['im_info', 'im_id', 'im_shape']
|
|
if cfg.metric == 'VOC':
|
|
extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
|
|
|
|
keys, values, cls = parse_fetches(fetches, eval_prog, extra_keys)
|
|
|
|
# whether output bbox is normalized in model output layer
|
|
is_bbox_normalized = False
|
|
if hasattr(model, 'is_bbox_normalized') and \
|
|
callable(model.is_bbox_normalized):
|
|
is_bbox_normalized = model.is_bbox_normalized()
|
|
|
|
sub_eval_prog = None
|
|
sub_keys = None
|
|
sub_values = None
|
|
# build sub-program
|
|
if 'Mask' in main_arch and multi_scale_test:
|
|
sub_eval_prog = fluid.Program()
|
|
with fluid.program_guard(sub_eval_prog, startup_prog):
|
|
with fluid.unique_name.guard():
|
|
inputs_def = cfg['EvalReader']['inputs_def']
|
|
inputs_def['mask_branch'] = True
|
|
feed_vars, eval_loader = model.build_inputs(**inputs_def)
|
|
sub_fetches = model.eval(
|
|
feed_vars, multi_scale_test, mask_branch=True)
|
|
assert cfg.metric == 'COCO'
|
|
extra_keys = ['im_id', 'im_shape']
|
|
sub_keys, sub_values, _ = parse_fetches(sub_fetches, sub_eval_prog,
|
|
extra_keys)
|
|
sub_eval_prog = sub_eval_prog.clone(True)
|
|
|
|
# load model
|
|
exe.run(startup_prog)
|
|
if 'weights' in cfg:
|
|
checkpoint.load_params(exe, startup_prog, cfg.weights)
|
|
|
|
resolution = None
|
|
if 'Mask' in cfg.architecture or cfg.architecture == 'HybridTaskCascade':
|
|
resolution = model.mask_head.resolution
|
|
results = eval_run(exe, compile_program, loader, keys, values, cls, cfg,
|
|
sub_eval_prog, sub_keys, sub_values, resolution)
|
|
|
|
# evaluation
|
|
# if map_type not set, use default 11point, only use in VOC eval
|
|
map_type = cfg.map_type if 'map_type' in cfg else '11point'
|
|
save_only = getattr(cfg, 'save_prediction_only', False)
|
|
eval_results(
|
|
results,
|
|
cfg.metric,
|
|
cfg.num_classes,
|
|
resolution,
|
|
is_bbox_normalized,
|
|
FLAGS.output_eval,
|
|
map_type,
|
|
dataset=dataset,
|
|
save_only=save_only)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
enable_static_mode()
|
|
parser = ArgsParser()
|
|
parser.add_argument(
|
|
"--json_eval",
|
|
action='store_true',
|
|
default=False,
|
|
help="Whether to re eval with already exists bbox.json or mask.json")
|
|
parser.add_argument(
|
|
"-f",
|
|
"--output_eval",
|
|
default=None,
|
|
type=str,
|
|
help="Evaluation file directory, default is current directory.")
|
|
FLAGS = parser.parse_args()
|
|
main()
|