PulseFocusPlatform/static/configs/solov2/solov2_mobilenetv3_fpn_448_...

80 lines
1.5 KiB
YAML

architecture: SOLOv2
use_gpu: true
max_iters: 135000
snapshot_iter: 20000
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar
metric: COCO
weights: output/solov2/solov2_mobilenetv3_fpn_448_3x/model_final
num_classes: 81
use_ema: true
ema_decay: 0.9998
SOLOv2:
backbone: MobileNetV3RCNN
fpn: FPN
bbox_head: SOLOv2Head
mask_head: SOLOv2MaskHead
MobileNetV3RCNN:
norm_type: bn
freeze_norm: true
norm_decay: 0.0
feature_maps: [2, 3, 4, 6]
conv_decay: 0.00001
lr_mult_list: [0.25, 0.25, 0.5, 0.5, 0.75]
scale: 1.0
model_name: large
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
reverse_out: True
SOLOv2Head:
seg_feat_channels: 256
stacked_convs: 2
num_grids: [40, 36, 24, 16, 12]
kernel_out_channels: 128
solov2_loss: SOLOv2Loss
mask_nms: MaskMatrixNMS
drop_block: True
SOLOv2MaskHead:
in_channels: 128
out_channels: 128
start_level: 0
end_level: 3
SOLOv2Loss:
ins_loss_weight: 3.0
focal_loss_gamma: 2.0
focal_loss_alpha: 0.25
MaskMatrixNMS:
pre_nms_top_n: 500
post_nms_top_n: 100
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [90000, 120000]
- !LinearWarmup
start_factor: 0.
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
_READER_: 'solov2_light_448_reader.yml'