forked from PulseFocusPlatform/PulseFocusPlatform
170 lines
4.6 KiB
C++
170 lines
4.6 KiB
C++
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <yaml-cpp/yaml.h>
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <memory>
|
|
#include <unordered_map>
|
|
|
|
#include <opencv2/core/core.hpp>
|
|
#include <opencv2/imgproc/imgproc.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
|
|
namespace PaddleDetection {
|
|
|
|
// Object for storing all preprocessed data
|
|
class ImageBlob {
|
|
public:
|
|
// Original image width and height
|
|
std::vector<int> ori_im_size_;
|
|
// Buffer for image data after preprocessing
|
|
std::vector<float> im_data_;
|
|
// Original image width, height, shrink in float format
|
|
std::vector<float> ori_im_size_f_;
|
|
// Evaluation image width and height
|
|
std::vector<float> eval_im_size_f_;
|
|
// Scale factor for image size to origin image size
|
|
std::vector<float> scale_factor_f_;
|
|
};
|
|
|
|
// Abstraction of preprocessing opration class
|
|
class PreprocessOp {
|
|
public:
|
|
virtual void Init(const YAML::Node& item, const std::string& arch) = 0;
|
|
virtual void Run(cv::Mat* im, ImageBlob* data) = 0;
|
|
};
|
|
|
|
class InitInfo : public PreprocessOp{
|
|
public:
|
|
virtual void Init(const YAML::Node& item, const std::string& arch) {}
|
|
virtual void Run(cv::Mat* im, ImageBlob* data);
|
|
};
|
|
|
|
class Normalize : public PreprocessOp {
|
|
public:
|
|
virtual void Init(const YAML::Node& item, const std::string& arch) {
|
|
mean_ = item["mean"].as<std::vector<float>>();
|
|
scale_ = item["std"].as<std::vector<float>>();
|
|
is_channel_first_ = item["is_channel_first"].as<bool>();
|
|
is_scale_ = item["is_scale"].as<bool>();
|
|
}
|
|
|
|
virtual void Run(cv::Mat* im, ImageBlob* data);
|
|
|
|
private:
|
|
// CHW or HWC
|
|
bool is_channel_first_;
|
|
bool is_scale_;
|
|
std::vector<float> mean_;
|
|
std::vector<float> scale_;
|
|
};
|
|
|
|
class Permute : public PreprocessOp {
|
|
public:
|
|
virtual void Init(const YAML::Node& item, const std::string& arch) {
|
|
to_bgr_ = item["to_bgr"].as<bool>();
|
|
is_channel_first_ = item["channel_first"].as<bool>();
|
|
}
|
|
|
|
virtual void Run(cv::Mat* im, ImageBlob* data);
|
|
|
|
private:
|
|
// RGB to BGR
|
|
bool to_bgr_;
|
|
// CHW or HWC
|
|
bool is_channel_first_;
|
|
};
|
|
|
|
class Resize : public PreprocessOp {
|
|
public:
|
|
virtual void Init(const YAML::Node& item, const std::string& arch) {
|
|
arch_ = arch;
|
|
interp_ = item["interp"].as<int>();
|
|
max_size_ = item["max_size"].as<int>();
|
|
if (item["image_shape"].IsDefined()) {
|
|
image_shape_ = item["image_shape"].as<std::vector<int>>();
|
|
}
|
|
target_size_ = item["target_size"].as<int>();
|
|
}
|
|
|
|
// Compute best resize scale for x-dimension, y-dimension
|
|
std::pair<float, float> GenerateScale(const cv::Mat& im);
|
|
|
|
virtual void Run(cv::Mat* im, ImageBlob* data);
|
|
|
|
private:
|
|
std::string arch_;
|
|
int interp_;
|
|
int max_size_;
|
|
int target_size_;
|
|
std::vector<int> image_shape_;
|
|
};
|
|
|
|
// Models with FPN need input shape % stride == 0
|
|
class PadStride : public PreprocessOp {
|
|
public:
|
|
virtual void Init(const YAML::Node& item, const std::string& arch) {
|
|
stride_ = item["stride"].as<int>();
|
|
}
|
|
|
|
virtual void Run(cv::Mat* im, ImageBlob* data);
|
|
|
|
private:
|
|
int stride_;
|
|
};
|
|
|
|
class Preprocessor {
|
|
public:
|
|
void Init(const YAML::Node& config_node, const std::string& arch) {
|
|
arch_ = arch;
|
|
// initialize image info at first
|
|
ops_["InitInfo"] = std::make_shared<InitInfo>();
|
|
for (const auto& item : config_node) {
|
|
auto op_name = item["type"].as<std::string>();
|
|
ops_[op_name] = CreateOp(op_name);
|
|
ops_[op_name]->Init(item, arch);
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<PreprocessOp> CreateOp(const std::string& name) {
|
|
if (name == "Resize") {
|
|
return std::make_shared<Resize>();
|
|
} else if (name == "Permute") {
|
|
return std::make_shared<Permute>();
|
|
} else if (name == "Normalize") {
|
|
return std::make_shared<Normalize>();
|
|
} else if (name == "PadStride") {
|
|
return std::make_shared<PadStride>();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void Run(cv::Mat* im, ImageBlob* data);
|
|
|
|
public:
|
|
static const std::vector<std::string> RUN_ORDER;
|
|
|
|
private:
|
|
std::string arch_;
|
|
std::unordered_map<std::string, std::shared_ptr<PreprocessOp>> ops_;
|
|
};
|
|
|
|
} // namespace PaddleDetection
|
|
|