PulseFocusPlatform/ppdet/modeling/losses/keypoint_loss.py

228 lines
7.7 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from itertools import cycle, islice
from collections import abc
import paddle
import paddle.nn as nn
from ppdet.core.workspace import register, serializable
__all__ = ['HrHRNetLoss', 'KeyPointMSELoss']
@register
@serializable
class KeyPointMSELoss(nn.Layer):
def __init__(self, use_target_weight=True):
"""
KeyPointMSELoss layer
Args:
use_target_weight (bool): whether to use target weight
"""
super(KeyPointMSELoss, self).__init__()
self.criterion = nn.MSELoss(reduction='mean')
self.use_target_weight = use_target_weight
def forward(self, output, records):
target = records['target']
target_weight = records['target_weight']
batch_size = output.shape[0]
num_joints = output.shape[1]
heatmaps_pred = output.reshape(
(batch_size, num_joints, -1)).split(num_joints, 1)
heatmaps_gt = target.reshape(
(batch_size, num_joints, -1)).split(num_joints, 1)
loss = 0
for idx in range(num_joints):
heatmap_pred = heatmaps_pred[idx].squeeze()
heatmap_gt = heatmaps_gt[idx].squeeze()
if self.use_target_weight:
loss += 0.5 * self.criterion(
heatmap_pred.multiply(target_weight[:, idx]),
heatmap_gt.multiply(target_weight[:, idx]))
else:
loss += 0.5 * self.criterion(heatmap_pred, heatmap_gt)
keypoint_losses = dict()
keypoint_losses['loss'] = loss / num_joints
return keypoint_losses
@register
@serializable
class HrHRNetLoss(nn.Layer):
def __init__(self, num_joints, swahr):
"""
HrHRNetLoss layer
Args:
num_joints (int): number of keypoints
"""
super(HrHRNetLoss, self).__init__()
if swahr:
self.heatmaploss = HeatMapSWAHRLoss(num_joints)
else:
self.heatmaploss = HeatMapLoss()
self.aeloss = AELoss()
self.ziploss = ZipLoss(
[self.heatmaploss, self.heatmaploss, self.aeloss])
def forward(self, inputs, records):
targets = []
targets.append([records['heatmap_gt1x'], records['mask_1x']])
targets.append([records['heatmap_gt2x'], records['mask_2x']])
targets.append(records['tagmap'])
keypoint_losses = dict()
loss = self.ziploss(inputs, targets)
keypoint_losses['heatmap_loss'] = loss[0] + loss[1]
keypoint_losses['pull_loss'] = loss[2][0]
keypoint_losses['push_loss'] = loss[2][1]
keypoint_losses['loss'] = recursive_sum(loss)
return keypoint_losses
class HeatMapLoss(object):
def __init__(self, loss_factor=1.0):
super(HeatMapLoss, self).__init__()
self.loss_factor = loss_factor
def __call__(self, preds, targets):
heatmap, mask = targets
loss = ((preds - heatmap)**2 * mask.cast('float').unsqueeze(1))
loss = paddle.clip(loss, min=0, max=2).mean()
loss *= self.loss_factor
return loss
class HeatMapSWAHRLoss(object):
def __init__(self, num_joints, loss_factor=1.0):
super(HeatMapSWAHRLoss, self).__init__()
self.loss_factor = loss_factor
self.num_joints = num_joints
def __call__(self, preds, targets):
heatmaps_gt, mask = targets
heatmaps_pred = preds[0]
scalemaps_pred = preds[1]
heatmaps_scaled_gt = paddle.where(heatmaps_gt > 0, 0.5 * heatmaps_gt * (
1 + (1 +
(scalemaps_pred - 1.) * paddle.log(heatmaps_gt + 1e-10))**2),
heatmaps_gt)
regularizer_loss = paddle.mean(
paddle.pow((scalemaps_pred - 1.) * (heatmaps_gt > 0).astype(float),
2))
omiga = 0.01
# thres = 2**(-1/omiga), threshold for positive weight
hm_weight = heatmaps_scaled_gt**(
omiga
) * paddle.abs(1 - heatmaps_pred) + paddle.abs(heatmaps_pred) * (
1 - heatmaps_scaled_gt**(omiga))
loss = (((heatmaps_pred - heatmaps_scaled_gt)**2) *
mask.cast('float').unsqueeze(1)) * hm_weight
loss = loss.mean()
loss = self.loss_factor * (loss + 1.0 * regularizer_loss)
return loss
class AELoss(object):
def __init__(self, pull_factor=0.001, push_factor=0.001):
super(AELoss, self).__init__()
self.pull_factor = pull_factor
self.push_factor = push_factor
def apply_single(self, pred, tagmap):
if tagmap.numpy()[:, :, 3].sum() == 0:
return (paddle.zeros([1]), paddle.zeros([1]))
nonzero = paddle.nonzero(tagmap[:, :, 3] > 0)
if nonzero.shape[0] == 0:
return (paddle.zeros([1]), paddle.zeros([1]))
p_inds = paddle.unique(nonzero[:, 0])
num_person = p_inds.shape[0]
if num_person == 0:
return (paddle.zeros([1]), paddle.zeros([1]))
pull = 0
tagpull_num = 0
embs_all = []
person_unvalid = 0
for person_idx in p_inds.numpy():
valid_single = tagmap[person_idx.item()]
validkpts = paddle.nonzero(valid_single[:, 3] > 0)
valid_single = paddle.index_select(valid_single, validkpts)
emb = paddle.gather_nd(pred, valid_single[:, :3])
if emb.shape[0] == 1:
person_unvalid += 1
mean = paddle.mean(emb, axis=0)
embs_all.append(mean)
pull += paddle.mean(paddle.pow(emb - mean, 2), axis=0)
tagpull_num += emb.shape[0]
pull /= max(num_person - person_unvalid, 1)
if num_person < 2:
return pull, paddle.zeros([1])
embs_all = paddle.stack(embs_all)
A = embs_all.expand([num_person, num_person])
B = A.transpose([1, 0])
diff = A - B
diff = paddle.pow(diff, 2)
push = paddle.exp(-diff)
push = paddle.sum(push) - num_person
push /= 2 * num_person * (num_person - 1)
return pull, push
def __call__(self, preds, tagmaps):
bs = preds.shape[0]
losses = [
self.apply_single(preds[i:i + 1].squeeze(),
tagmaps[i:i + 1].squeeze()) for i in range(bs)
]
pull = self.pull_factor * sum(loss[0] for loss in losses) / len(losses)
push = self.push_factor * sum(loss[1] for loss in losses) / len(losses)
return pull, push
class ZipLoss(object):
def __init__(self, loss_funcs):
super(ZipLoss, self).__init__()
self.loss_funcs = loss_funcs
def __call__(self, inputs, targets):
assert len(self.loss_funcs) == len(targets) >= len(inputs)
def zip_repeat(*args):
longest = max(map(len, args))
filled = [islice(cycle(x), longest) for x in args]
return zip(*filled)
return tuple(
fn(x, y)
for x, y, fn in zip_repeat(inputs, targets, self.loss_funcs))
def recursive_sum(inputs):
if isinstance(inputs, abc.Sequence):
return sum([recursive_sum(x) for x in inputs])
return inputs