forked from PulseFocusPlatform/PulseFocusPlatform
113 lines
2.0 KiB
YAML
113 lines
2.0 KiB
YAML
architecture: MaskRCNN
|
|
max_iters: 180000
|
|
snapshot_iter: 10000
|
|
use_gpu: true
|
|
log_iter: 20
|
|
save_dir: output
|
|
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
|
|
weights: output/mask_rcnn_r101_vd_fpn_1x/model_final
|
|
metric: COCO
|
|
num_classes: 81
|
|
|
|
MaskRCNN:
|
|
backbone: ResNet
|
|
fpn: FPN
|
|
rpn_head: FPNRPNHead
|
|
roi_extractor: FPNRoIAlign
|
|
bbox_head: BBoxHead
|
|
bbox_assigner: BBoxAssigner
|
|
|
|
ResNet:
|
|
depth: 101
|
|
feature_maps: [2, 3, 4, 5]
|
|
freeze_at: 2
|
|
norm_type: affine_channel
|
|
variant: d
|
|
|
|
FPN:
|
|
max_level: 6
|
|
min_level: 2
|
|
num_chan: 256
|
|
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
|
|
|
|
FPNRPNHead:
|
|
anchor_generator:
|
|
aspect_ratios: [0.5, 1.0, 2.0]
|
|
variance: [1.0, 1.0, 1.0, 1.0]
|
|
anchor_start_size: 32
|
|
max_level: 6
|
|
min_level: 2
|
|
num_chan: 256
|
|
rpn_target_assign:
|
|
rpn_batch_size_per_im: 256
|
|
rpn_fg_fraction: 0.5
|
|
rpn_negative_overlap: 0.3
|
|
rpn_positive_overlap: 0.7
|
|
rpn_straddle_thresh: 0.0
|
|
train_proposal:
|
|
min_size: 0.0
|
|
nms_thresh: 0.7
|
|
pre_nms_top_n: 2000
|
|
post_nms_top_n: 2000
|
|
test_proposal:
|
|
min_size: 0.0
|
|
nms_thresh: 0.7
|
|
pre_nms_top_n: 1000
|
|
post_nms_top_n: 1000
|
|
|
|
FPNRoIAlign:
|
|
canconical_level: 4
|
|
canonical_size: 224
|
|
max_level: 5
|
|
min_level: 2
|
|
sampling_ratio: 2
|
|
box_resolution: 7
|
|
mask_resolution: 14
|
|
|
|
MaskHead:
|
|
dilation: 1
|
|
conv_dim: 256
|
|
num_convs: 4
|
|
resolution: 28
|
|
|
|
BBoxAssigner:
|
|
batch_size_per_im: 512
|
|
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
|
|
bg_thresh_hi: 0.5
|
|
bg_thresh_lo: 0.0
|
|
fg_fraction: 0.25
|
|
fg_thresh: 0.5
|
|
|
|
MaskAssigner:
|
|
resolution: 28
|
|
|
|
BBoxHead:
|
|
head: TwoFCHead
|
|
nms:
|
|
keep_top_k: 100
|
|
nms_threshold: 0.5
|
|
score_threshold: 0.05
|
|
|
|
TwoFCHead:
|
|
mlp_dim: 1024
|
|
|
|
LearningRate:
|
|
base_lr: 0.01
|
|
schedulers:
|
|
- !PiecewiseDecay
|
|
gamma: 0.1
|
|
milestones: [120000, 160000]
|
|
- !LinearWarmup
|
|
start_factor: 0.1
|
|
steps: 1000
|
|
|
|
OptimizerBuilder:
|
|
optimizer:
|
|
momentum: 0.9
|
|
type: Momentum
|
|
regularizer:
|
|
factor: 0.0001
|
|
type: L2
|
|
|
|
_READER_: 'mask_fpn_reader.yml'
|