PulseFocusPlatform/static/ppdet/modeling/backbones/ghostnet.py

362 lines
13 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay
from collections import OrderedDict
from ppdet.core.workspace import register
__all__ = ["GhostNet"]
@register
class GhostNet(object):
"""
scale (float): scaling factor for convolution groups proportion of GhostNet.
feature_maps (list): index of stages whose feature maps are returned.
conv_decay (float): weight decay for convolution layer weights.
extra_block_filters (list): number of filter for each extra block.
lr_mult_list (list): learning rate ratio of different blocks, lower learning rate ratio
is need for pretrained model got using distillation(default as
[1.0, 1.0, 1.0, 1.0, 1.0]).
"""
def __init__(
self,
scale,
feature_maps=[5, 6, 7, 8, 9, 10],
conv_decay=0.00001,
extra_block_filters=[[256, 512], [128, 256], [128, 256], [64, 128]],
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
freeze_norm=False):
self.scale = scale
self.feature_maps = feature_maps
self.extra_block_filters = extra_block_filters
self.end_points = []
self.block_stride = 0
self.conv_decay = conv_decay
self.lr_mult_list = lr_mult_list
self.freeze_norm = freeze_norm
self.curr_stage = 0
self.cfgs = [
# k, t, c, se, s
[3, 16, 16, 0, 1],
[3, 48, 24, 0, 2],
[3, 72, 24, 0, 1],
[5, 72, 40, 1, 2],
[5, 120, 40, 1, 1],
[3, 240, 80, 0, 2],
[3, 200, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 480, 112, 1, 1],
[3, 672, 112, 1, 1],
[5, 672, 160, 1, 2],
[5, 960, 160, 0, 1],
[5, 960, 160, 1, 1],
[5, 960, 160, 0, 1],
[5, 960, 160, 1, 1]
]
def _conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
lr_idx = self.curr_stage // 3
lr_idx = min(lr_idx, len(self.lr_mult_list) - 1)
lr_mult = self.lr_mult_list[lr_idx]
norm_lr = 0. if self.freeze_norm else lr_mult
x = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(
regularizer=L2Decay(self.conv_decay),
learning_rate=lr_mult,
initializer=fluid.initializer.MSRA(),
name=name + "_weights"),
bias_attr=False)
bn_name = name + "_bn"
x = fluid.layers.batch_norm(
input=x,
act=act,
param_attr=ParamAttr(
name=bn_name + "_scale",
learning_rate=norm_lr,
regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(
name=bn_name + "_offset",
learning_rate=norm_lr,
regularizer=L2Decay(0.0)),
moving_mean_name=bn_name + "_mean",
moving_variance_name=name + "_variance")
return x
def se_block(self, input, num_channels, reduction_ratio=4, name=None):
lr_idx = self.curr_stage // 3
lr_idx = min(lr_idx, len(self.lr_mult_list) - 1)
lr_mult = self.lr_mult_list[lr_idx]
pool = fluid.layers.pool2d(
input=input, pool_type='avg', global_pooling=True, use_cudnn=False)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
squeeze = fluid.layers.fc(
input=pool,
size=num_channels // reduction_ratio,
act='relu',
param_attr=ParamAttr(
learning_rate=lr_mult,
initializer=fluid.initializer.Uniform(-stdv, stdv),
name=name + '_1_weights'),
bias_attr=ParamAttr(
name=name + '_1_offset', learning_rate=lr_mult))
stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
excitation = fluid.layers.fc(
input=squeeze,
size=num_channels,
act=None,
param_attr=ParamAttr(
learning_rate=lr_mult,
initializer=fluid.initializer.Uniform(-stdv, stdv),
name=name + '_2_weights'),
bias_attr=ParamAttr(
name=name + '_2_offset', learning_rate=lr_mult))
excitation = fluid.layers.clip(x=excitation, min=0, max=1)
se_scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
return se_scale
def depthwise_conv(self,
input,
output,
kernel_size,
stride=1,
relu=False,
name=None):
return self._conv_bn_layer(
input=input,
num_filters=output,
filter_size=kernel_size,
stride=stride,
groups=input.shape[1],
act="relu" if relu else None,
name=name + "_depthwise")
def ghost_module(self,
input,
output,
kernel_size=1,
ratio=2,
dw_size=3,
stride=1,
relu=True,
name=None):
self.output = output
init_channels = int(math.ceil(output / ratio))
new_channels = int(init_channels * (ratio - 1))
primary_conv = self._conv_bn_layer(
input=input,
num_filters=init_channels,
filter_size=kernel_size,
stride=stride,
groups=1,
act="relu" if relu else None,
name=name + "_primary_conv")
cheap_operation = self._conv_bn_layer(
input=primary_conv,
num_filters=new_channels,
filter_size=dw_size,
stride=1,
groups=init_channels,
act="relu" if relu else None,
name=name + "_cheap_operation")
out = fluid.layers.concat([primary_conv, cheap_operation], axis=1)
return out
def ghost_bottleneck(self,
input,
hidden_dim,
output,
kernel_size,
stride,
use_se,
name=None):
inp_channels = input.shape[1]
x = self.ghost_module(
input=input,
output=hidden_dim,
kernel_size=1,
stride=1,
relu=True,
name=name + "_ghost_module_1")
if self.block_stride == 4 and stride == 2:
self.block_stride += 1
if self.block_stride in self.feature_maps:
self.end_points.append(x)
if stride == 2:
x = self.depthwise_conv(
input=x,
output=hidden_dim,
kernel_size=kernel_size,
stride=stride,
relu=False,
name=name + "_depthwise")
if use_se:
x = self.se_block(
input=x, num_channels=hidden_dim, name=name + "_se")
x = self.ghost_module(
input=x,
output=output,
kernel_size=1,
relu=False,
name=name + "_ghost_module_2")
if stride == 1 and inp_channels == output:
shortcut = input
else:
shortcut = self.depthwise_conv(
input=input,
output=inp_channels,
kernel_size=kernel_size,
stride=stride,
relu=False,
name=name + "_shortcut_depthwise")
shortcut = self._conv_bn_layer(
input=shortcut,
num_filters=output,
filter_size=1,
stride=1,
groups=1,
act=None,
name=name + "_shortcut_conv")
return fluid.layers.elementwise_add(x=x, y=shortcut, axis=-1)
def _extra_block_dw(self,
input,
num_filters1,
num_filters2,
stride,
name=None):
pointwise_conv = self._conv_bn_layer(
input=input,
filter_size=1,
num_filters=int(num_filters1),
stride=1,
act='relu6',
name=name + "_extra1")
depthwise_conv = self._conv_bn_layer(
input=pointwise_conv,
filter_size=3,
num_filters=int(num_filters2),
stride=stride,
groups=int(num_filters1),
act='relu6',
name=name + "_extra2_dw")
normal_conv = self._conv_bn_layer(
input=depthwise_conv,
filter_size=1,
num_filters=int(num_filters2),
stride=1,
act='relu6',
name=name + "_extra2_sep")
return normal_conv
def _make_divisible(self, v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
def __call__(self, input):
# build first layer
output_channel = int(self._make_divisible(16 * self.scale, 4))
x = self._conv_bn_layer(
input=input,
num_filters=output_channel,
filter_size=3,
stride=2,
groups=1,
act="relu",
name="conv1")
# build inverted residual blocks
idx = 0
for k, exp_size, c, use_se, s in self.cfgs:
if s == 2:
self.block_stride += 1
if self.block_stride in self.feature_maps:
self.end_points.append(x)
output_channel = int(self._make_divisible(c * self.scale, 4))
hidden_channel = int(self._make_divisible(exp_size * self.scale, 4))
x = self.ghost_bottleneck(
input=x,
hidden_dim=hidden_channel,
output=output_channel,
kernel_size=k,
stride=s,
use_se=use_se,
name="_ghostbottleneck_" + str(idx))
idx += 1
self.curr_stage += 1
self.block_stride += 1
if self.block_stride in self.feature_maps:
self.end_points.append(conv)
# extra block
# check whether conv_extra is needed
if self.block_stride < max(self.feature_maps):
conv_extra = self._conv_bn_layer(
x,
num_filters=self._make_divisible(self.scale * self.cfgs[-1][1]),
filter_size=1,
stride=1,
groups=1,
act='relu6',
name='conv' + str(idx + 2))
self.block_stride += 1
if self.block_stride in self.feature_maps:
self.end_points.append(conv_extra)
idx += 1
for block_filter in self.extra_block_filters:
conv_extra = self._extra_block_dw(conv_extra, block_filter[0],
block_filter[1], 2,
'conv' + str(idx + 2))
self.block_stride += 1
if self.block_stride in self.feature_maps:
self.end_points.append(conv_extra)
idx += 1
return OrderedDict([('ghost_{}'.format(idx), feat)
for idx, feat in enumerate(self.end_points)])
return res