PulseFocusPlatform/static/ppdet/modeling/backbones/senet.py

125 lines
4.6 KiB
Python

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from ppdet.experimental import mixed_precision_global_state
from ppdet.core.workspace import register, serializable
from .resnext import ResNeXt
__all__ = ['SENet', 'SENetC5']
@register
@serializable
class SENet(ResNeXt):
"""
Squeeze-and-Excitation Networks, see https://arxiv.org/abs/1709.01507
Args:
depth (int): SENet depth, should be 50, 101, 152
groups (int): group convolution cardinality
group_width (int): width of each group convolution
freeze_at (int): freeze the backbone at which stage
norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel'
freeze_norm (bool): freeze normalization layers
norm_decay (float): weight decay for normalization layer weights
variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
feature_maps (list): index of the stages whose feature maps are returned
dcn_v2_stages (list): index of stages who select deformable conv v2
"""
def __init__(self,
depth=50,
groups=64,
group_width=4,
freeze_at=2,
norm_type='affine_channel',
freeze_norm=True,
norm_decay=0.,
variant='d',
feature_maps=[2, 3, 4, 5],
dcn_v2_stages=[],
std_senet=False,
weight_prefix_name=''):
super(SENet, self).__init__(depth, groups, group_width, freeze_at,
norm_type, freeze_norm, norm_decay, variant,
feature_maps)
if depth < 152:
self.stage_filters = [128, 256, 512, 1024]
else:
self.stage_filters = [256, 512, 1024, 2048]
self.reduction_ratio = 16
self.std_senet = std_senet
self._c1_out_chan_num = 128
self._model_type = 'SEResNeXt'
self.dcn_v2_stages = dcn_v2_stages
def _squeeze_excitation(self, input, num_channels, name=None):
mixed_precision_enabled = mixed_precision_global_state() is not None
pool = fluid.layers.pool2d(
input=input,
pool_size=0,
pool_type='avg',
global_pooling=True,
use_cudnn=mixed_precision_enabled)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
squeeze = fluid.layers.fc(
input=pool,
size=int(num_channels / self.reduction_ratio),
act='relu',
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name=name + '_sqz_weights'),
bias_attr=ParamAttr(name=name + '_sqz_offset'))
stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
excitation = fluid.layers.fc(
input=squeeze,
size=num_channels,
act='sigmoid',
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name=name + '_exc_weights'),
bias_attr=ParamAttr(name=name + '_exc_offset'))
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
return scale
@register
@serializable
class SENetC5(SENet):
__doc__ = SENet.__doc__
def __init__(self,
depth=50,
groups=64,
group_width=4,
freeze_at=2,
norm_type='affine_channel',
freeze_norm=True,
norm_decay=0.,
variant='d',
feature_maps=[5],
weight_prefix_name=''):
super(SENetC5, self).__init__(depth, groups, group_width, freeze_at,
norm_type, freeze_norm, norm_decay,
variant, feature_maps)
self.severed_head = True