PulseFocusPlatform/ppdet/utils/visualizer.py

292 lines
10 KiB
Python

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
from PIL import Image, ImageDraw
import cv2
import math
from .colormap import colormap
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = ['visualize_results']
def visualize_results(image,
bbox_res,
mask_res,
segm_res,
keypoint_res,
im_id,
catid2name,
threshold=0.5):
"""
Visualize bbox and mask results
"""
if bbox_res is not None:
image = draw_bbox(image, im_id, catid2name, bbox_res, threshold)
if mask_res is not None:
image = draw_mask(image, im_id, mask_res, threshold)
if segm_res is not None:
image = draw_segm(image, im_id, catid2name, segm_res, threshold)
if keypoint_res is not None:
image = draw_pose(image, keypoint_res, threshold)
return image
def draw_mask(image, im_id, segms, threshold, alpha=0.7):
"""
Draw mask on image
"""
mask_color_id = 0
w_ratio = .4
color_list = colormap(rgb=True)
img_array = np.array(image).astype('float32')
for dt in np.array(segms):
if im_id != dt['image_id']:
continue
segm, score = dt['segmentation'], dt['score']
if score < threshold:
continue
import pycocotools.mask as mask_util
mask = mask_util.decode(segm) * 255
color_mask = color_list[mask_color_id % len(color_list), 0:3]
mask_color_id += 1
for c in range(3):
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
idx = np.nonzero(mask)
img_array[idx[0], idx[1], :] *= 1.0 - alpha
img_array[idx[0], idx[1], :] += alpha * color_mask
return Image.fromarray(img_array.astype('uint8'))
def draw_bbox(image, im_id, catid2name, bboxes, threshold):
"""
Draw bbox on image
"""
draw = ImageDraw.Draw(image)
catid2color = {}
color_list = colormap(rgb=True)[:40]
for dt in np.array(bboxes):
if im_id != dt['image_id']:
continue
catid, bbox, score = dt['category_id'], dt['bbox'], dt['score']
if score < threshold:
continue
if catid not in catid2color:
idx = np.random.randint(len(color_list))
catid2color[catid] = color_list[idx]
color = tuple(catid2color[catid])
# draw bbox
if len(bbox) == 4:
# draw bbox
xmin, ymin, w, h = bbox
xmax = xmin + w
ymax = ymin + h
draw.line(
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
(xmin, ymin)],
width=2,
fill=color)
elif len(bbox) == 8:
x1, y1, x2, y2, x3, y3, x4, y4 = bbox
draw.line(
[(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
width=2,
fill=color)
xmin = min(x1, x2, x3, x4)
ymin = min(y1, y2, y3, y4)
else:
logger.error('the shape of bbox must be [M, 4] or [M, 8]!')
# draw label
text = "{} {:.2f}".format(catid2name[catid], score)
tw, th = draw.textsize(text)
draw.rectangle(
[(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
return image
def save_result(save_path, results, catid2name, threshold):
"""
save result as txt
"""
img_id = int(results["im_id"])
with open(save_path, 'w') as f:
if "bbox_res" in results:
for dt in results["bbox_res"]:
catid, bbox, score = dt['category_id'], dt['bbox'], dt['score']
if score < threshold:
continue
# each bbox result as a line
# for rbox: classname score x1 y1 x2 y2 x3 y3 x4 y4
# for bbox: classname score x1 y1 w h
bbox_pred = '{} {} '.format(catid2name[catid],
score) + ' '.join(
[str(e) for e in bbox])
f.write(bbox_pred + '\n')
elif "keypoint_res" in results:
for dt in results["keypoint_res"]:
kpts = dt['keypoints']
scores = dt['score']
keypoint_pred = [img_id, scores, kpts]
print(keypoint_pred, file=f)
else:
print("No valid results found, skip txt save")
def draw_segm(image,
im_id,
catid2name,
segms,
threshold,
alpha=0.7,
draw_box=True):
"""
Draw segmentation on image
"""
mask_color_id = 0
w_ratio = .4
color_list = colormap(rgb=True)
img_array = np.array(image).astype('float32')
for dt in np.array(segms):
if im_id != dt['image_id']:
continue
segm, score, catid = dt['segmentation'], dt['score'], dt['category_id']
if score < threshold:
continue
import pycocotools.mask as mask_util
mask = mask_util.decode(segm) * 255
color_mask = color_list[mask_color_id % len(color_list), 0:3]
mask_color_id += 1
for c in range(3):
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
idx = np.nonzero(mask)
img_array[idx[0], idx[1], :] *= 1.0 - alpha
img_array[idx[0], idx[1], :] += alpha * color_mask
if not draw_box:
center_y, center_x = ndimage.measurements.center_of_mass(mask)
label_text = "{}".format(catid2name[catid])
vis_pos = (max(int(center_x) - 10, 0), int(center_y))
cv2.putText(img_array, label_text, vis_pos,
cv2.FONT_HERSHEY_COMPLEX, 0.3, (255, 255, 255))
else:
mask = mask_util.decode(segm) * 255
sum_x = np.sum(mask, axis=0)
x = np.where(sum_x > 0.5)[0]
sum_y = np.sum(mask, axis=1)
y = np.where(sum_y > 0.5)[0]
x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
cv2.rectangle(img_array, (x0, y0), (x1, y1),
tuple(color_mask.astype('int32').tolist()), 1)
bbox_text = '%s %.2f' % (catid2name[catid], score)
t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
cv2.rectangle(img_array, (x0, y0), (x0 + t_size[0],
y0 - t_size[1] - 3),
tuple(color_mask.astype('int32').tolist()), -1)
cv2.putText(
img_array,
bbox_text, (x0, y0 - 2),
cv2.FONT_HERSHEY_SIMPLEX,
0.3, (0, 0, 0),
1,
lineType=cv2.LINE_AA)
return Image.fromarray(img_array.astype('uint8'))
def map_coco_to_personlab(keypoints):
permute = [0, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3]
return keypoints[:, permute, :]
def draw_pose(image, results, visual_thread=0.6, save_name='pose.jpg'):
try:
import matplotlib.pyplot as plt
import matplotlib
plt.switch_backend('agg')
except Exception as e:
logger.error('Matplotlib not found, plaese install matplotlib.'
'for example: `pip install matplotlib`.')
raise e
EDGES = [(0, 14), (0, 13), (0, 4), (0, 1), (14, 16), (13, 15), (4, 10),
(1, 7), (10, 11), (7, 8), (11, 12), (8, 9), (4, 5), (1, 2), (5, 6),
(2, 3)]
NUM_EDGES = len(EDGES)
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
cmap = matplotlib.cm.get_cmap('hsv')
plt.figure()
skeletons = np.array([item['keypoints'] for item in results]).reshape(-1,
17, 3)
img = np.array(image).astype('float32')
canvas = img.copy()
for i in range(17):
rgba = np.array(cmap(1 - i / 17. - 1. / 34))
rgba[0:3] *= 255
for j in range(len(skeletons)):
if skeletons[j][i, 2] < visual_thread:
continue
cv2.circle(
canvas,
tuple(skeletons[j][i, 0:2].astype('int32')),
2,
colors[i],
thickness=-1)
to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0)
fig = matplotlib.pyplot.gcf()
stickwidth = 2
skeletons = map_coco_to_personlab(skeletons)
for i in range(NUM_EDGES):
for j in range(len(skeletons)):
edge = EDGES[i]
if skeletons[j][edge[0], 2] < visual_thread or skeletons[j][edge[
1], 2] < visual_thread:
continue
cur_canvas = canvas.copy()
X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]]
Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)),
(int(length / 2), stickwidth),
int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
image = Image.fromarray(canvas.astype('uint8'))
plt.close()
return image