forked from PulseFocusPlatform/PulseFocusPlatform
292 lines
10 KiB
Python
292 lines
10 KiB
Python
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy as np
|
|
from PIL import Image, ImageDraw
|
|
import cv2
|
|
import math
|
|
|
|
from .colormap import colormap
|
|
from ppdet.utils.logger import setup_logger
|
|
logger = setup_logger(__name__)
|
|
|
|
__all__ = ['visualize_results']
|
|
|
|
|
|
def visualize_results(image,
|
|
bbox_res,
|
|
mask_res,
|
|
segm_res,
|
|
keypoint_res,
|
|
im_id,
|
|
catid2name,
|
|
threshold=0.5):
|
|
"""
|
|
Visualize bbox and mask results
|
|
"""
|
|
if bbox_res is not None:
|
|
image = draw_bbox(image, im_id, catid2name, bbox_res, threshold)
|
|
if mask_res is not None:
|
|
image = draw_mask(image, im_id, mask_res, threshold)
|
|
if segm_res is not None:
|
|
image = draw_segm(image, im_id, catid2name, segm_res, threshold)
|
|
if keypoint_res is not None:
|
|
image = draw_pose(image, keypoint_res, threshold)
|
|
return image
|
|
|
|
|
|
def draw_mask(image, im_id, segms, threshold, alpha=0.7):
|
|
"""
|
|
Draw mask on image
|
|
"""
|
|
mask_color_id = 0
|
|
w_ratio = .4
|
|
color_list = colormap(rgb=True)
|
|
img_array = np.array(image).astype('float32')
|
|
for dt in np.array(segms):
|
|
if im_id != dt['image_id']:
|
|
continue
|
|
segm, score = dt['segmentation'], dt['score']
|
|
if score < threshold:
|
|
continue
|
|
import pycocotools.mask as mask_util
|
|
mask = mask_util.decode(segm) * 255
|
|
color_mask = color_list[mask_color_id % len(color_list), 0:3]
|
|
mask_color_id += 1
|
|
for c in range(3):
|
|
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
|
|
idx = np.nonzero(mask)
|
|
img_array[idx[0], idx[1], :] *= 1.0 - alpha
|
|
img_array[idx[0], idx[1], :] += alpha * color_mask
|
|
return Image.fromarray(img_array.astype('uint8'))
|
|
|
|
|
|
def draw_bbox(image, im_id, catid2name, bboxes, threshold):
|
|
"""
|
|
Draw bbox on image
|
|
"""
|
|
draw = ImageDraw.Draw(image)
|
|
|
|
catid2color = {}
|
|
color_list = colormap(rgb=True)[:40]
|
|
for dt in np.array(bboxes):
|
|
if im_id != dt['image_id']:
|
|
continue
|
|
catid, bbox, score = dt['category_id'], dt['bbox'], dt['score']
|
|
if score < threshold:
|
|
continue
|
|
|
|
if catid not in catid2color:
|
|
idx = np.random.randint(len(color_list))
|
|
catid2color[catid] = color_list[idx]
|
|
color = tuple(catid2color[catid])
|
|
|
|
# draw bbox
|
|
if len(bbox) == 4:
|
|
# draw bbox
|
|
xmin, ymin, w, h = bbox
|
|
xmax = xmin + w
|
|
ymax = ymin + h
|
|
draw.line(
|
|
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
|
|
(xmin, ymin)],
|
|
width=2,
|
|
fill=color)
|
|
elif len(bbox) == 8:
|
|
x1, y1, x2, y2, x3, y3, x4, y4 = bbox
|
|
draw.line(
|
|
[(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
|
|
width=2,
|
|
fill=color)
|
|
xmin = min(x1, x2, x3, x4)
|
|
ymin = min(y1, y2, y3, y4)
|
|
else:
|
|
logger.error('the shape of bbox must be [M, 4] or [M, 8]!')
|
|
|
|
# draw label
|
|
text = "{} {:.2f}".format(catid2name[catid], score)
|
|
tw, th = draw.textsize(text)
|
|
draw.rectangle(
|
|
[(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
|
|
draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
|
|
|
|
return image
|
|
|
|
|
|
def save_result(save_path, results, catid2name, threshold):
|
|
"""
|
|
save result as txt
|
|
"""
|
|
img_id = int(results["im_id"])
|
|
with open(save_path, 'w') as f:
|
|
if "bbox_res" in results:
|
|
for dt in results["bbox_res"]:
|
|
catid, bbox, score = dt['category_id'], dt['bbox'], dt['score']
|
|
if score < threshold:
|
|
continue
|
|
# each bbox result as a line
|
|
# for rbox: classname score x1 y1 x2 y2 x3 y3 x4 y4
|
|
# for bbox: classname score x1 y1 w h
|
|
bbox_pred = '{} {} '.format(catid2name[catid],
|
|
score) + ' '.join(
|
|
[str(e) for e in bbox])
|
|
f.write(bbox_pred + '\n')
|
|
elif "keypoint_res" in results:
|
|
for dt in results["keypoint_res"]:
|
|
kpts = dt['keypoints']
|
|
scores = dt['score']
|
|
keypoint_pred = [img_id, scores, kpts]
|
|
print(keypoint_pred, file=f)
|
|
else:
|
|
print("No valid results found, skip txt save")
|
|
|
|
|
|
def draw_segm(image,
|
|
im_id,
|
|
catid2name,
|
|
segms,
|
|
threshold,
|
|
alpha=0.7,
|
|
draw_box=True):
|
|
"""
|
|
Draw segmentation on image
|
|
"""
|
|
mask_color_id = 0
|
|
w_ratio = .4
|
|
color_list = colormap(rgb=True)
|
|
img_array = np.array(image).astype('float32')
|
|
for dt in np.array(segms):
|
|
if im_id != dt['image_id']:
|
|
continue
|
|
segm, score, catid = dt['segmentation'], dt['score'], dt['category_id']
|
|
if score < threshold:
|
|
continue
|
|
import pycocotools.mask as mask_util
|
|
mask = mask_util.decode(segm) * 255
|
|
color_mask = color_list[mask_color_id % len(color_list), 0:3]
|
|
mask_color_id += 1
|
|
for c in range(3):
|
|
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
|
|
idx = np.nonzero(mask)
|
|
img_array[idx[0], idx[1], :] *= 1.0 - alpha
|
|
img_array[idx[0], idx[1], :] += alpha * color_mask
|
|
|
|
if not draw_box:
|
|
center_y, center_x = ndimage.measurements.center_of_mass(mask)
|
|
label_text = "{}".format(catid2name[catid])
|
|
vis_pos = (max(int(center_x) - 10, 0), int(center_y))
|
|
cv2.putText(img_array, label_text, vis_pos,
|
|
cv2.FONT_HERSHEY_COMPLEX, 0.3, (255, 255, 255))
|
|
else:
|
|
mask = mask_util.decode(segm) * 255
|
|
sum_x = np.sum(mask, axis=0)
|
|
x = np.where(sum_x > 0.5)[0]
|
|
sum_y = np.sum(mask, axis=1)
|
|
y = np.where(sum_y > 0.5)[0]
|
|
x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
|
|
cv2.rectangle(img_array, (x0, y0), (x1, y1),
|
|
tuple(color_mask.astype('int32').tolist()), 1)
|
|
bbox_text = '%s %.2f' % (catid2name[catid], score)
|
|
t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
|
|
cv2.rectangle(img_array, (x0, y0), (x0 + t_size[0],
|
|
y0 - t_size[1] - 3),
|
|
tuple(color_mask.astype('int32').tolist()), -1)
|
|
cv2.putText(
|
|
img_array,
|
|
bbox_text, (x0, y0 - 2),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
0.3, (0, 0, 0),
|
|
1,
|
|
lineType=cv2.LINE_AA)
|
|
|
|
return Image.fromarray(img_array.astype('uint8'))
|
|
|
|
|
|
def map_coco_to_personlab(keypoints):
|
|
permute = [0, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3]
|
|
return keypoints[:, permute, :]
|
|
|
|
|
|
def draw_pose(image, results, visual_thread=0.6, save_name='pose.jpg'):
|
|
try:
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib
|
|
plt.switch_backend('agg')
|
|
except Exception as e:
|
|
logger.error('Matplotlib not found, plaese install matplotlib.'
|
|
'for example: `pip install matplotlib`.')
|
|
raise e
|
|
EDGES = [(0, 14), (0, 13), (0, 4), (0, 1), (14, 16), (13, 15), (4, 10),
|
|
(1, 7), (10, 11), (7, 8), (11, 12), (8, 9), (4, 5), (1, 2), (5, 6),
|
|
(2, 3)]
|
|
NUM_EDGES = len(EDGES)
|
|
|
|
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
|
|
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
|
|
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
|
cmap = matplotlib.cm.get_cmap('hsv')
|
|
plt.figure()
|
|
|
|
skeletons = np.array([item['keypoints'] for item in results]).reshape(-1,
|
|
17, 3)
|
|
img = np.array(image).astype('float32')
|
|
canvas = img.copy()
|
|
|
|
for i in range(17):
|
|
rgba = np.array(cmap(1 - i / 17. - 1. / 34))
|
|
rgba[0:3] *= 255
|
|
for j in range(len(skeletons)):
|
|
if skeletons[j][i, 2] < visual_thread:
|
|
continue
|
|
cv2.circle(
|
|
canvas,
|
|
tuple(skeletons[j][i, 0:2].astype('int32')),
|
|
2,
|
|
colors[i],
|
|
thickness=-1)
|
|
|
|
to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0)
|
|
fig = matplotlib.pyplot.gcf()
|
|
|
|
stickwidth = 2
|
|
|
|
skeletons = map_coco_to_personlab(skeletons)
|
|
for i in range(NUM_EDGES):
|
|
for j in range(len(skeletons)):
|
|
edge = EDGES[i]
|
|
if skeletons[j][edge[0], 2] < visual_thread or skeletons[j][edge[
|
|
1], 2] < visual_thread:
|
|
continue
|
|
|
|
cur_canvas = canvas.copy()
|
|
X = [skeletons[j][edge[0], 1], skeletons[j][edge[1], 1]]
|
|
Y = [skeletons[j][edge[0], 0], skeletons[j][edge[1], 0]]
|
|
mX = np.mean(X)
|
|
mY = np.mean(Y)
|
|
length = ((X[0] - X[1])**2 + (Y[0] - Y[1])**2)**0.5
|
|
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
|
polygon = cv2.ellipse2Poly((int(mY), int(mX)),
|
|
(int(length / 2), stickwidth),
|
|
int(angle), 0, 360, 1)
|
|
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
|
|
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
|
|
image = Image.fromarray(canvas.astype('uint8'))
|
|
plt.close()
|
|
return image
|