forked from PulseFocusPlatform/PulseFocusPlatform
339 lines
12 KiB
Python
339 lines
12 KiB
Python
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from collections import OrderedDict
|
|
import copy
|
|
from paddle import fluid
|
|
from paddle.fluid.param_attr import ParamAttr
|
|
from paddle.fluid.initializer import Xavier
|
|
from paddle.fluid.regularizer import L2Decay
|
|
|
|
from ppdet.core.workspace import register
|
|
from ppdet.modeling.ops import ConvNorm
|
|
|
|
__all__ = ['ACFPN']
|
|
|
|
|
|
@register
|
|
class ACFPN(object):
|
|
"""
|
|
Attention-guided Context Feature Pyramid Network for Object Detection,
|
|
see https://arxiv.org/abs/2005.11475
|
|
|
|
Args:
|
|
num_chan (int): number of feature channels
|
|
min_level (int): lowest level of the backbone feature map to use
|
|
max_level (int): highest level of the backbone feature map to use
|
|
spatial_scale (list): feature map scaling factor
|
|
has_extra_convs (bool): whether has extral convolutions in higher levels
|
|
norm_type (str|None): normalization type, 'bn'/'sync_bn'/'affine_channel'
|
|
use_c5 (bool): whether to use C5 as the feature map.
|
|
norm_groups (int): group number of group norm.
|
|
"""
|
|
__shared__ = ['norm_type', 'freeze_norm']
|
|
|
|
def __init__(self,
|
|
num_chan=256,
|
|
min_level=2,
|
|
max_level=6,
|
|
spatial_scale=[1. / 32., 1. / 16., 1. / 8., 1. / 4.],
|
|
has_extra_convs=False,
|
|
norm_type=None,
|
|
freeze_norm=False,
|
|
use_c5=True,
|
|
norm_groups=32):
|
|
self.freeze_norm = freeze_norm
|
|
self.num_chan = num_chan
|
|
self.min_level = min_level
|
|
self.max_level = max_level
|
|
self.spatial_scale = spatial_scale
|
|
self.has_extra_convs = has_extra_convs
|
|
self.norm_type = norm_type
|
|
self.use_c5 = use_c5
|
|
self.norm_groups = norm_groups
|
|
|
|
def _add_topdown_lateral(self, body_name, body_input, upper_output):
|
|
lateral_name = 'fpn_inner_' + body_name + '_lateral'
|
|
topdown_name = 'fpn_topdown_' + body_name
|
|
fan = body_input.shape[1]
|
|
if self.norm_type:
|
|
initializer = Xavier(fan_out=fan)
|
|
lateral = ConvNorm(
|
|
body_input,
|
|
self.num_chan,
|
|
1,
|
|
initializer=initializer,
|
|
norm_type=self.norm_type,
|
|
freeze_norm=self.freeze_norm,
|
|
name=lateral_name,
|
|
norm_name=lateral_name)
|
|
else:
|
|
lateral = fluid.layers.conv2d(
|
|
body_input,
|
|
self.num_chan,
|
|
1,
|
|
param_attr=ParamAttr(
|
|
name=lateral_name + "_w", initializer=Xavier(fan_out=fan)),
|
|
bias_attr=ParamAttr(
|
|
name=lateral_name + "_b",
|
|
learning_rate=2.,
|
|
regularizer=L2Decay(0.)),
|
|
name=lateral_name)
|
|
topdown = fluid.layers.resize_nearest(
|
|
upper_output, scale=2., name=topdown_name)
|
|
|
|
return lateral + topdown
|
|
|
|
def dense_aspp_block(self, input, num_filters1, num_filters2, dilation_rate,
|
|
dropout_prob, name):
|
|
|
|
conv = ConvNorm(
|
|
input,
|
|
num_filters=num_filters1,
|
|
filter_size=1,
|
|
stride=1,
|
|
groups=1,
|
|
norm_decay=0.,
|
|
norm_type='gn',
|
|
norm_groups=self.norm_groups,
|
|
dilation=dilation_rate,
|
|
lr_scale=1,
|
|
freeze_norm=False,
|
|
act="relu",
|
|
norm_name=name + "_gn",
|
|
initializer=None,
|
|
bias_attr=False,
|
|
name=name + "_gn")
|
|
|
|
conv = fluid.layers.conv2d(
|
|
conv,
|
|
num_filters2,
|
|
filter_size=3,
|
|
padding=dilation_rate,
|
|
dilation=dilation_rate,
|
|
act="relu",
|
|
param_attr=ParamAttr(name=name + "_conv_w"),
|
|
bias_attr=ParamAttr(name=name + "_conv_b"), )
|
|
|
|
if dropout_prob > 0:
|
|
conv = fluid.layers.dropout(conv, dropout_prob=dropout_prob)
|
|
|
|
return conv
|
|
|
|
def dense_aspp(self, input, name=None):
|
|
dropout0 = 0.1
|
|
d_feature0 = 512
|
|
d_feature1 = 256
|
|
|
|
aspp3 = self.dense_aspp_block(
|
|
input,
|
|
num_filters1=d_feature0,
|
|
num_filters2=d_feature1,
|
|
dropout_prob=dropout0,
|
|
name=name + '_aspp3',
|
|
dilation_rate=3)
|
|
conv = fluid.layers.concat([aspp3, input], axis=1)
|
|
|
|
aspp6 = self.dense_aspp_block(
|
|
conv,
|
|
num_filters1=d_feature0,
|
|
num_filters2=d_feature1,
|
|
dropout_prob=dropout0,
|
|
name=name + '_aspp6',
|
|
dilation_rate=6)
|
|
conv = fluid.layers.concat([aspp6, conv], axis=1)
|
|
|
|
aspp12 = self.dense_aspp_block(
|
|
conv,
|
|
num_filters1=d_feature0,
|
|
num_filters2=d_feature1,
|
|
dropout_prob=dropout0,
|
|
name=name + '_aspp12',
|
|
dilation_rate=12)
|
|
conv = fluid.layers.concat([aspp12, conv], axis=1)
|
|
|
|
aspp18 = self.dense_aspp_block(
|
|
conv,
|
|
num_filters1=d_feature0,
|
|
num_filters2=d_feature1,
|
|
dropout_prob=dropout0,
|
|
name=name + '_aspp18',
|
|
dilation_rate=18)
|
|
conv = fluid.layers.concat([aspp18, conv], axis=1)
|
|
|
|
aspp24 = self.dense_aspp_block(
|
|
conv,
|
|
num_filters1=d_feature0,
|
|
num_filters2=d_feature1,
|
|
dropout_prob=dropout0,
|
|
name=name + '_aspp24',
|
|
dilation_rate=24)
|
|
|
|
conv = fluid.layers.concat(
|
|
[aspp3, aspp6, aspp12, aspp18, aspp24], axis=1)
|
|
|
|
conv = ConvNorm(
|
|
conv,
|
|
num_filters=self.num_chan,
|
|
filter_size=1,
|
|
stride=1,
|
|
groups=1,
|
|
norm_decay=0.,
|
|
norm_type='gn',
|
|
norm_groups=self.norm_groups,
|
|
dilation=1,
|
|
lr_scale=1,
|
|
freeze_norm=False,
|
|
act="relu",
|
|
norm_name=name + "_dense_aspp_reduce_gn",
|
|
initializer=None,
|
|
bias_attr=False,
|
|
name=name + "_dense_aspp_reduce_gn")
|
|
|
|
return conv
|
|
|
|
def get_output(self, body_dict):
|
|
"""
|
|
Add FPN onto backbone.
|
|
|
|
Args:
|
|
body_dict(OrderedDict): Dictionary of variables and each element is the
|
|
output of backbone.
|
|
|
|
Return:
|
|
fpn_dict(OrderedDict): A dictionary represents the output of FPN with
|
|
their name.
|
|
spatial_scale(list): A list of multiplicative spatial scale factor.
|
|
"""
|
|
spatial_scale = copy.deepcopy(self.spatial_scale)
|
|
body_name_list = list(body_dict.keys())[::-1]
|
|
num_backbone_stages = len(body_name_list)
|
|
self.fpn_inner_output = [[] for _ in range(num_backbone_stages)]
|
|
fpn_inner_name = 'fpn_inner_' + body_name_list[0]
|
|
body_input = body_dict[body_name_list[0]]
|
|
fan = body_input.shape[1]
|
|
if self.norm_type:
|
|
initializer = Xavier(fan_out=fan)
|
|
self.fpn_inner_output[0] = ConvNorm(
|
|
body_input,
|
|
self.num_chan,
|
|
1,
|
|
initializer=initializer,
|
|
norm_type=self.norm_type,
|
|
freeze_norm=self.freeze_norm,
|
|
name=fpn_inner_name,
|
|
norm_name=fpn_inner_name)
|
|
else:
|
|
self.fpn_inner_output[0] = fluid.layers.conv2d(
|
|
body_input,
|
|
self.num_chan,
|
|
1,
|
|
param_attr=ParamAttr(
|
|
name=fpn_inner_name + "_w",
|
|
initializer=Xavier(fan_out=fan)),
|
|
bias_attr=ParamAttr(
|
|
name=fpn_inner_name + "_b",
|
|
learning_rate=2.,
|
|
regularizer=L2Decay(0.)),
|
|
name=fpn_inner_name)
|
|
|
|
self.fpn_inner_output[0] += self.dense_aspp(
|
|
self.fpn_inner_output[0], name="acfpn")
|
|
|
|
for i in range(1, num_backbone_stages):
|
|
body_name = body_name_list[i]
|
|
body_input = body_dict[body_name]
|
|
top_output = self.fpn_inner_output[i - 1]
|
|
fpn_inner_single = self._add_topdown_lateral(body_name, body_input,
|
|
top_output)
|
|
self.fpn_inner_output[i] = fpn_inner_single
|
|
fpn_dict = {}
|
|
fpn_name_list = []
|
|
for i in range(num_backbone_stages):
|
|
fpn_name = 'fpn_' + body_name_list[i]
|
|
fan = self.fpn_inner_output[i].shape[1] * 3 * 3
|
|
if self.norm_type:
|
|
initializer = Xavier(fan_out=fan)
|
|
fpn_output = ConvNorm(
|
|
self.fpn_inner_output[i],
|
|
self.num_chan,
|
|
3,
|
|
initializer=initializer,
|
|
norm_type=self.norm_type,
|
|
freeze_norm=self.freeze_norm,
|
|
name=fpn_name,
|
|
norm_name=fpn_name)
|
|
else:
|
|
fpn_output = fluid.layers.conv2d(
|
|
self.fpn_inner_output[i],
|
|
self.num_chan,
|
|
filter_size=3,
|
|
padding=1,
|
|
param_attr=ParamAttr(
|
|
name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
|
|
bias_attr=ParamAttr(
|
|
name=fpn_name + "_b",
|
|
learning_rate=2.,
|
|
regularizer=L2Decay(0.)),
|
|
name=fpn_name)
|
|
fpn_dict[fpn_name] = fpn_output
|
|
fpn_name_list.append(fpn_name)
|
|
if not self.has_extra_convs and self.max_level - self.min_level == len(
|
|
spatial_scale):
|
|
body_top_name = fpn_name_list[0]
|
|
body_top_extension = fluid.layers.pool2d(
|
|
fpn_dict[body_top_name],
|
|
1,
|
|
'max',
|
|
pool_stride=2,
|
|
name=body_top_name + '_subsampled_2x')
|
|
fpn_dict[body_top_name + '_subsampled_2x'] = body_top_extension
|
|
fpn_name_list.insert(0, body_top_name + '_subsampled_2x')
|
|
spatial_scale.insert(0, spatial_scale[0] * 0.5)
|
|
# Coarser FPN levels introduced for RetinaNet
|
|
highest_backbone_level = self.min_level + len(spatial_scale) - 1
|
|
if self.has_extra_convs and self.max_level > highest_backbone_level:
|
|
if self.use_c5:
|
|
fpn_blob = body_dict[body_name_list[0]]
|
|
else:
|
|
fpn_blob = fpn_dict[fpn_name_list[0]]
|
|
for i in range(highest_backbone_level + 1, self.max_level + 1):
|
|
fpn_blob_in = fpn_blob
|
|
fpn_name = 'fpn_' + str(i)
|
|
if i > highest_backbone_level + 1:
|
|
fpn_blob_in = fluid.layers.relu(fpn_blob)
|
|
fan = fpn_blob_in.shape[1] * 3 * 3
|
|
fpn_blob = fluid.layers.conv2d(
|
|
input=fpn_blob_in,
|
|
num_filters=self.num_chan,
|
|
filter_size=3,
|
|
stride=2,
|
|
padding=1,
|
|
param_attr=ParamAttr(
|
|
name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
|
|
bias_attr=ParamAttr(
|
|
name=fpn_name + "_b",
|
|
learning_rate=2.,
|
|
regularizer=L2Decay(0.)),
|
|
name=fpn_name)
|
|
fpn_dict[fpn_name] = fpn_blob
|
|
fpn_name_list.insert(0, fpn_name)
|
|
spatial_scale.insert(0, spatial_scale[0] * 0.5)
|
|
res_dict = OrderedDict([(k, fpn_dict[k]) for k in fpn_name_list])
|
|
return res_dict, spatial_scale
|