forked from PulseFocusPlatform/PulseFocusPlatform
90 lines
3.3 KiB
Python
90 lines
3.3 KiB
Python
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from ppdet.core.workspace import register, serializable
|
|
from .resnet import ResNet
|
|
|
|
__all__ = ['ResNeXt']
|
|
|
|
|
|
@register
|
|
@serializable
|
|
class ResNeXt(ResNet):
|
|
"""
|
|
ResNeXt, see https://arxiv.org/abs/1611.05431
|
|
Args:
|
|
depth (int): network depth, should be 50, 101, 152.
|
|
groups (int): group convolution cardinality
|
|
group_width (int): width of each group convolution
|
|
freeze_at (int): freeze the backbone at which stage
|
|
norm_type (str): normalization type, 'bn', 'sync_bn' or 'affine_channel'
|
|
freeze_norm (bool): freeze normalization layers
|
|
norm_decay (float): weight decay for normalization layer weights
|
|
variant (str): ResNet variant, supports 'a', 'b', 'c', 'd' currently
|
|
feature_maps (list): index of the stages whose feature maps are returned
|
|
dcn_v2_stages (list): index of stages who select deformable conv v2
|
|
"""
|
|
|
|
def __init__(self,
|
|
depth=50,
|
|
groups=64,
|
|
group_width=4,
|
|
freeze_at=2,
|
|
norm_type='affine_channel',
|
|
freeze_norm=True,
|
|
norm_decay=True,
|
|
variant='a',
|
|
feature_maps=[2, 3, 4, 5],
|
|
dcn_v2_stages=[],
|
|
weight_prefix_name=''):
|
|
assert depth in [50, 101, 152], "depth {} should be 50, 101 or 152"
|
|
super(ResNeXt, self).__init__(depth, freeze_at, norm_type, freeze_norm,
|
|
norm_decay, variant, feature_maps)
|
|
self.depth_cfg = {
|
|
50: ([3, 4, 6, 3], self.bottleneck),
|
|
101: ([3, 4, 23, 3], self.bottleneck),
|
|
152: ([3, 8, 36, 3], self.bottleneck)
|
|
}
|
|
self.stage_filters = [256, 512, 1024, 2048]
|
|
self.groups = groups
|
|
self.group_width = group_width
|
|
self._model_type = 'ResNeXt'
|
|
self.dcn_v2_stages = dcn_v2_stages
|
|
|
|
|
|
@register
|
|
@serializable
|
|
class ResNeXtC5(ResNeXt):
|
|
__doc__ = ResNeXt.__doc__
|
|
|
|
def __init__(self,
|
|
depth=50,
|
|
groups=64,
|
|
group_width=4,
|
|
freeze_at=2,
|
|
norm_type='affine_channel',
|
|
freeze_norm=True,
|
|
norm_decay=True,
|
|
variant='a',
|
|
feature_maps=[5],
|
|
weight_prefix_name=''):
|
|
super(ResNeXtC5, self).__init__(depth, groups, group_width, freeze_at,
|
|
norm_type, freeze_norm, norm_decay,
|
|
variant, feature_maps)
|
|
self.severed_head = True
|