PulseFocusPlatform/docs/feature_models/SSLD_PRETRAINED_MODEL_en.md

7.3 KiB

English | 简体中文

Simple semi-supervised label knowledge distillation solution (SSLD)

R-CNN on COCO

Backbone Model Images/GPU Lr schd FPS Box AP Mask AP Download Config
ResNet50-vd-SSLDv2-FPN Faster 1 1x ---- 41.4 - model config
ResNet50-vd-SSLDv2-FPN Faster 1 2x ---- 42.3 - model config
ResNet50-vd-SSLDv2-FPN Mask 1 1x ---- 42.0 38.2 model config
ResNet50-vd-SSLDv2-FPN Mask 1 2x ---- 42.7 38.9 model config
ResNet50-vd-SSLDv2-FPN Cascade Faster 1 1x ---- 44.4 - model config
ResNet50-vd-SSLDv2-FPN Cascade Faster 1 2x ---- 45.0 - model config
ResNet50-vd-SSLDv2-FPN Cascade Mask 1 1x ---- 44.9 39.1 model config
ResNet50-vd-SSLDv2-FPN Cascade Mask 1 2x ---- 45.7 39.7 model config

YOLOv3 on COCO

Backbone Input shape Images/GPU Lr schd FPS Box AP Download Config
MobileNet-V1-SSLD 608 8 270e ---- 31.0 model config
MobileNet-V1-SSLD 416 8 270e ---- 30.6 model config
MobileNet-V1-SSLD 320 8 270e ---- 28.4 model config

YOLOv3 on Pasacl VOC

Backbone Input shape Images/GPU Lr schd FPS Box AP Download Config
MobileNet-V1-SSLD 608 8 270e - 78.3 model config
MobileNet-V1-SSLD 416 8 270e - 79.6 model config
MobileNet-V1-SSLD 320 8 270e - 77.3 model config
MobileNet-V3-SSLD 608 8 270e - 80.4 model config
MobileNet-V3-SSLD 416 8 270e - 79.2 model config
MobileNet-V3-SSLD 320 8 270e - 77.3 model config

Notes:

  • SSLD is a knowledge distillation method. We use the stronger backbone pretrained model after distillation to further improve the detection accuracy. Please refer to the knowledge distillation tutorial.

demo image

Citations

@misc{cui2021selfsupervision,
      title={Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones},
      author={Cheng Cui and Ruoyu Guo and Yuning Du and Dongliang He and Fu Li and Zewu Wu and Qiwen Liu and Shilei Wen and Jizhou Huang and Xiaoguang Hu and Dianhai Yu and Errui Ding and Yanjun Ma},
      year={2021},
      eprint={2103.05959},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}