PulseFocusPlatform/static/slim/nas/train_nas.py

421 lines
16 KiB
Python

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
if parent_path not in sys.path:
sys.path.append(parent_path)
import time
import numpy as np
import datetime
from collections import deque
from paddle import fluid
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
try:
from ppdet.experimental import mixed_precision_context
from ppdet.core.workspace import load_config, merge_config, create, register
from ppdet.data.reader import create_reader
from ppdet.utils import dist_utils
from ppdet.utils.eval_utils import parse_fetches, eval_run
from ppdet.utils.stats import TrainingStats
from ppdet.utils.cli import ArgsParser
from ppdet.utils.check import check_gpu, check_version, check_config, enable_static_mode
import ppdet.utils.checkpoint as checkpoint
except ImportError as e:
if sys.argv[0].find('static') >= 0:
logger.error("Importing ppdet failed when running static model "
"with error: {}\n"
"please try:\n"
"\t1. run static model under PaddleDetection/static "
"directory\n"
"\t2. run 'pip uninstall ppdet' to uninstall ppdet "
"dynamic version firstly.".format(e))
sys.exit(-1)
else:
raise e
from paddleslim.analysis import flops, TableLatencyEvaluator
from paddleslim.nas import SANAS
@register
class Constraint(object):
"""
Constraint for nas
"""
def __init__(self,
ctype,
max_constraint=None,
min_constraint=None,
table_file=None):
super(Constraint, self).__init__()
self.ctype = ctype
self.max_constraint = max_constraint
self.min_constraint = min_constraint
self.table_file = table_file
def compute_constraint(self, program):
if self.ctype == 'flops':
model_status = flops(program)
elif self.ctype == 'latency':
assert os.path.exists(
self.table_file
), "latency constraint must have latency table, please check whether table file exist!"
model_latency = TableLatencyEvaluator(self.table_file)
model_status = model_latency.latency(program, only_conv=True)
else:
raise NotImplementedError(
"{} constraint is NOT support!!! Now PaddleSlim support flops constraint and latency constraint".
format(self.ctype))
return model_status
def get_bboxes_scores(result):
bboxes = result['bbox'][0]
gt_bbox = result['gt_bbox'][0]
bbox_lengths = result['bbox'][1][0]
gt_lengths = result['gt_bbox'][1][0]
bbox_list = []
gt_box_list = []
for i in range(len(bbox_lengths)):
num = bbox_lengths[i]
for j in range(num):
dt = bboxes[j]
clsid, score, xmin, ymin, xmax, ymax = dt.tolist()
im_shape = result['im_shape'][0][i].tolist()
im_height, im_width = int(im_shape[0]), int(im_shape[1])
xmin *= im_width
ymin *= im_height
xmax *= im_width
ymax *= im_height
bbox_list.append([xmin, ymin, xmax, ymax, score])
faces_num_gt = 0
for i in range(len(gt_lengths)):
num = gt_lengths[i]
for j in range(num):
gt = gt_bbox[j]
xmin, ymin, xmax, ymax = gt.tolist()
im_shape = result['im_shape'][0][i].tolist()
im_height, im_width = int(im_shape[0]), int(im_shape[1])
xmin *= im_width
ymin *= im_height
xmax *= im_width
ymax *= im_height
gt_box_list.append([xmin, ymin, xmax, ymax])
faces_num_gt += 1
return gt_box_list, bbox_list, faces_num_gt
def calculate_ap_py(results):
def cal_iou(rect1, rect2):
lt_x = max(rect1[0], rect2[0])
lt_y = max(rect1[1], rect2[1])
rb_x = min(rect1[2], rect2[2])
rb_y = min(rect1[3], rect2[3])
if (rb_x > lt_x) and (rb_y > lt_y):
intersection = (rb_x - lt_x) * (rb_y - lt_y)
else:
return 0
area1 = (rect1[2] - rect1[0]) * (rect1[3] - rect1[1])
area2 = (rect2[2] - rect2[0]) * (rect2[3] - rect2[1])
intersection = min(intersection, area1, area2)
union = area1 + area2 - intersection
return float(intersection) / union
def is_same_face(face_gt, face_pred):
iou = cal_iou(face_gt, face_pred)
return iou >= 0.5
def eval_single_image(faces_gt, faces_pred):
pred_is_true = [False] * len(faces_pred)
gt_been_pred = [False] * len(faces_gt)
for i in range(len(faces_pred)):
isface = False
for j in range(len(faces_gt)):
if gt_been_pred[j] == 0:
isface = is_same_face(faces_gt[j], faces_pred[i])
if isface == 1:
gt_been_pred[j] = True
break
pred_is_true[i] = isface
return pred_is_true
score_res_pair = {}
faces_num_gt = 0
for t in results:
gt_box_list, bbox_list, face_num_gt = get_bboxes_scores(t)
faces_num_gt += face_num_gt
pred_is_true = eval_single_image(gt_box_list, bbox_list)
for i in range(0, len(pred_is_true)):
now_score = bbox_list[i][-1]
if now_score in score_res_pair:
score_res_pair[now_score].append(int(pred_is_true[i]))
else:
score_res_pair[now_score] = [int(pred_is_true[i])]
keys = score_res_pair.keys()
keys = sorted(keys, reverse=True)
tp_num = 0
predict_num = 0
precision_list = []
recall_list = []
for i in range(len(keys)):
k = keys[i]
v = score_res_pair[k]
predict_num += len(v)
tp_num += sum(v)
recall = float(tp_num) / faces_num_gt
precision_list.append(float(tp_num) / predict_num)
recall_list.append(recall)
ap = precision_list[0] * recall_list[0]
for i in range(1, len(precision_list)):
ap += precision_list[i] * (recall_list[i] - recall_list[i - 1])
return ap
def main():
env = os.environ
FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env
if FLAGS.dist:
trainer_id = int(env['PADDLE_TRAINER_ID'])
import random
local_seed = (99 + trainer_id)
random.seed(local_seed)
np.random.seed(local_seed)
cfg = load_config(FLAGS.config)
merge_config(FLAGS.opt)
check_config(cfg)
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu(cfg.use_gpu)
# check if paddlepaddle version is satisfied
check_version()
main_arch = cfg.architecture
if cfg.use_gpu:
devices_num = fluid.core.get_cuda_device_count()
else:
devices_num = int(os.environ.get('CPU_NUM', 1))
if 'FLAGS_selected_gpus' in env:
device_id = int(env['FLAGS_selected_gpus'])
else:
device_id = 0
place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
lr_builder = create('LearningRate')
optim_builder = create('OptimizerBuilder')
# add NAS
config = ([(cfg.search_space)])
server_address = (cfg.server_ip, cfg.server_port)
load_checkpoint = FLAGS.resume_checkpoint if FLAGS.resume_checkpoint else None
sa_nas = SANAS(
config,
server_addr=server_address,
init_temperature=cfg.init_temperature,
reduce_rate=cfg.reduce_rate,
search_steps=cfg.search_steps,
save_checkpoint=cfg.save_dir,
load_checkpoint=load_checkpoint,
is_server=cfg.is_server)
start_iter = 0
train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) *
devices_num, cfg)
eval_reader = create_reader(cfg.EvalReader)
constraint = create('Constraint')
for step in range(cfg.search_steps):
logger.info('----->>> search step: {} <<<------'.format(step))
archs = sa_nas.next_archs()[0]
# build program
startup_prog = fluid.Program()
train_prog = fluid.Program()
with fluid.program_guard(train_prog, startup_prog):
with fluid.unique_name.guard():
model = create(main_arch)
if FLAGS.fp16:
assert (getattr(model.backbone, 'norm_type', None)
!= 'affine_channel'), \
'--fp16 currently does not support affine channel, ' \
' please modify backbone settings to use batch norm'
with mixed_precision_context(FLAGS.loss_scale,
FLAGS.fp16) as ctx:
inputs_def = cfg['TrainReader']['inputs_def']
feed_vars, train_loader = model.build_inputs(**inputs_def)
train_fetches = archs(feed_vars, 'train', cfg)
loss = train_fetches['loss']
if FLAGS.fp16:
loss *= ctx.get_loss_scale_var()
lr = lr_builder()
optimizer = optim_builder(lr)
optimizer.minimize(loss)
if FLAGS.fp16:
loss /= ctx.get_loss_scale_var()
current_constraint = constraint.compute_constraint(train_prog)
logger.info('current steps: {}, constraint {}'.format(
step, current_constraint))
if (constraint.max_constraint != None and
current_constraint > constraint.max_constraint) or (
constraint.min_constraint != None and
current_constraint < constraint.min_constraint):
continue
# parse train fetches
train_keys, train_values, _ = parse_fetches(train_fetches)
train_values.append(lr)
if FLAGS.eval:
eval_prog = fluid.Program()
with fluid.program_guard(eval_prog, startup_prog):
with fluid.unique_name.guard():
model = create(main_arch)
inputs_def = cfg['EvalReader']['inputs_def']
feed_vars, eval_loader = model.build_inputs(**inputs_def)
fetches = archs(feed_vars, 'eval', cfg)
eval_prog = eval_prog.clone(True)
# When iterable mode, set set_sample_list_generator(eval_reader, place)
eval_loader.set_sample_list_generator(eval_reader)
extra_keys = ['im_id', 'im_shape', 'gt_bbox']
eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
extra_keys)
# compile program for multi-devices
build_strategy = fluid.BuildStrategy()
build_strategy.fuse_all_optimizer_ops = False
build_strategy.fuse_elewise_add_act_ops = True
exec_strategy = fluid.ExecutionStrategy()
# iteration number when CompiledProgram tries to drop local execution scopes.
# Set it to be 1 to save memory usages, so that unused variables in
# local execution scopes can be deleted after each iteration.
exec_strategy.num_iteration_per_drop_scope = 1
if FLAGS.dist:
dist_utils.prepare_for_multi_process(exe, build_strategy,
startup_prog, train_prog)
exec_strategy.num_threads = 1
exe.run(startup_prog)
compiled_train_prog = fluid.CompiledProgram(
train_prog).with_data_parallel(
loss_name=loss.name,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
if FLAGS.eval:
compiled_eval_prog = fluid.CompiledProgram(eval_prog)
# When iterable mode, set set_sample_list_generator(train_reader, place)
train_loader.set_sample_list_generator(train_reader)
train_stats = TrainingStats(cfg.log_iter, train_keys)
train_loader.start()
end_time = time.time()
cfg_name = os.path.basename(FLAGS.config).split('.')[0]
save_dir = os.path.join(cfg.save_dir, cfg_name)
time_stat = deque(maxlen=cfg.log_iter)
ap = 0
for it in range(start_iter, cfg.max_iters):
start_time = end_time
end_time = time.time()
time_stat.append(end_time - start_time)
time_cost = np.mean(time_stat)
eta_sec = (cfg.max_iters - it) * time_cost
eta = str(datetime.timedelta(seconds=int(eta_sec)))
outs = exe.run(compiled_train_prog, fetch_list=train_values)
stats = {
k: np.array(v).mean()
for k, v in zip(train_keys, outs[:-1])
}
train_stats.update(stats)
logs = train_stats.log()
if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0):
strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
it, np.mean(outs[-1]), logs, time_cost, eta)
logger.info(strs)
if (it > 0 and it == cfg.max_iters - 1) and (not FLAGS.dist or
trainer_id == 0):
save_name = str(
it) if it != cfg.max_iters - 1 else "model_final"
checkpoint.save(exe, train_prog,
os.path.join(save_dir, save_name))
if FLAGS.eval:
# evaluation
results = eval_run(exe, compiled_eval_prog, eval_loader,
eval_keys, eval_values, eval_cls)
ap = calculate_ap_py(results)
train_loader.reset()
eval_loader.reset()
logger.info('rewards: ap is {}'.format(ap))
sa_nas.reward(float(ap))
current_best_tokens = sa_nas.current_info()['best_tokens']
logger.info("All steps end, the best BlazeFace-NAS structure is: ")
sa_nas.tokens2arch(current_best_tokens)
if __name__ == '__main__':
enable_static_mode()
parser = ArgsParser()
parser.add_argument(
"-r",
"--resume_checkpoint",
default=None,
type=str,
help="Checkpoint path for resuming training.")
parser.add_argument(
"--fp16",
action='store_true',
default=False,
help="Enable mixed precision training.")
parser.add_argument(
"--loss_scale",
default=8.,
type=float,
help="Mixed precision training loss scale.")
parser.add_argument(
"--eval",
action='store_true',
default=True,
help="Whether to perform evaluation in train")
FLAGS = parser.parse_args()
main()