PulseFocusPlatform/ppdet/modeling/losses/ctfocal_loss.py

68 lines
2.3 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, serializable
__all__ = ['CTFocalLoss']
@register
@serializable
class CTFocalLoss(object):
"""
CTFocalLoss: CornerNet & CenterNet Focal Loss
Args:
loss_weight (float): loss weight
gamma (float): gamma parameter for Focal Loss
"""
def __init__(self, loss_weight=1., gamma=2.0):
self.loss_weight = loss_weight
self.gamma = gamma
def __call__(self, pred, target):
"""
Calculate the loss
Args:
pred (Tensor): heatmap prediction
target (Tensor): target for positive samples
Return:
ct_focal_loss (Tensor): Focal Loss used in CornerNet & CenterNet.
Note that the values in target are in [0, 1] since gaussian is
used to reduce the punishment and we treat [0, 1) as neg example.
"""
fg_map = paddle.cast(target == 1, 'float32')
fg_map.stop_gradient = True
bg_map = paddle.cast(target < 1, 'float32')
bg_map.stop_gradient = True
neg_weights = paddle.pow(1 - target, 4) * bg_map
pos_loss = 0 - paddle.log(pred) * paddle.pow(1 - pred,
self.gamma) * fg_map
neg_loss = 0 - paddle.log(1 - pred) * paddle.pow(
pred, self.gamma) * neg_weights
pos_loss = paddle.sum(pos_loss)
neg_loss = paddle.sum(neg_loss)
fg_num = paddle.sum(fg_map)
ct_focal_loss = (pos_loss + neg_loss) / (
fg_num + paddle.cast(fg_num == 0, 'float32'))
return ct_focal_loss * self.loss_weight