PulseFocusPlatform/ppdet/modeling/backbones/mobilenet_v1.py

410 lines
13 KiB
Python

# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from paddle.nn.initializer import KaimingNormal
from ppdet.core.workspace import register, serializable
from numbers import Integral
from ..shape_spec import ShapeSpec
__all__ = ['MobileNet']
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
num_groups=1,
act='relu',
conv_lr=1.,
conv_decay=0.,
norm_decay=0.,
norm_type='bn',
name=None):
super(ConvBNLayer, self).__init__()
self.act = act
self._conv = nn.Conv2D(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=num_groups,
weight_attr=ParamAttr(
learning_rate=conv_lr,
initializer=KaimingNormal(),
regularizer=L2Decay(conv_decay)),
bias_attr=False)
param_attr = ParamAttr(regularizer=L2Decay(norm_decay))
bias_attr = ParamAttr(regularizer=L2Decay(norm_decay))
if norm_type == 'sync_bn':
self._batch_norm = nn.SyncBatchNorm(
out_channels, weight_attr=param_attr, bias_attr=bias_attr)
else:
self._batch_norm = nn.BatchNorm(
out_channels,
act=None,
param_attr=param_attr,
bias_attr=bias_attr,
use_global_stats=False)
def forward(self, x):
x = self._conv(x)
x = self._batch_norm(x)
if self.act == "relu":
x = F.relu(x)
elif self.act == "relu6":
x = F.relu6(x)
return x
class DepthwiseSeparable(nn.Layer):
def __init__(self,
in_channels,
out_channels1,
out_channels2,
num_groups,
stride,
scale,
conv_lr=1.,
conv_decay=0.,
norm_decay=0.,
norm_type='bn',
name=None):
super(DepthwiseSeparable, self).__init__()
self._depthwise_conv = ConvBNLayer(
in_channels,
int(out_channels1 * scale),
kernel_size=3,
stride=stride,
padding=1,
num_groups=int(num_groups * scale),
conv_lr=conv_lr,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name=name + "_dw")
self._pointwise_conv = ConvBNLayer(
int(out_channels1 * scale),
int(out_channels2 * scale),
kernel_size=1,
stride=1,
padding=0,
conv_lr=conv_lr,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name=name + "_sep")
def forward(self, x):
x = self._depthwise_conv(x)
x = self._pointwise_conv(x)
return x
class ExtraBlock(nn.Layer):
def __init__(self,
in_channels,
out_channels1,
out_channels2,
num_groups=1,
stride=2,
conv_lr=1.,
conv_decay=0.,
norm_decay=0.,
norm_type='bn',
name=None):
super(ExtraBlock, self).__init__()
self.pointwise_conv = ConvBNLayer(
in_channels,
int(out_channels1),
kernel_size=1,
stride=1,
padding=0,
num_groups=int(num_groups),
act='relu6',
conv_lr=conv_lr,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name=name + "_extra1")
self.normal_conv = ConvBNLayer(
int(out_channels1),
int(out_channels2),
kernel_size=3,
stride=stride,
padding=1,
num_groups=int(num_groups),
act='relu6',
conv_lr=conv_lr,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name=name + "_extra2")
def forward(self, x):
x = self.pointwise_conv(x)
x = self.normal_conv(x)
return x
@register
@serializable
class MobileNet(nn.Layer):
__shared__ = ['norm_type']
def __init__(self,
norm_type='bn',
norm_decay=0.,
conv_decay=0.,
scale=1,
conv_learning_rate=1.0,
feature_maps=[4, 6, 13],
with_extra_blocks=False,
extra_block_filters=[[256, 512], [128, 256], [128, 256],
[64, 128]]):
super(MobileNet, self).__init__()
if isinstance(feature_maps, Integral):
feature_maps = [feature_maps]
self.feature_maps = feature_maps
self.with_extra_blocks = with_extra_blocks
self.extra_block_filters = extra_block_filters
self._out_channels = []
self.conv1 = ConvBNLayer(
in_channels=3,
out_channels=int(32 * scale),
kernel_size=3,
stride=2,
padding=1,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv1")
self.dwsl = []
dws21 = self.add_sublayer(
"conv2_1",
sublayer=DepthwiseSeparable(
in_channels=int(32 * scale),
out_channels1=32,
out_channels2=64,
num_groups=32,
stride=1,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv2_1"))
self.dwsl.append(dws21)
self._update_out_channels(64, len(self.dwsl), feature_maps)
dws22 = self.add_sublayer(
"conv2_2",
sublayer=DepthwiseSeparable(
in_channels=int(64 * scale),
out_channels1=64,
out_channels2=128,
num_groups=64,
stride=2,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv2_2"))
self.dwsl.append(dws22)
self._update_out_channels(128, len(self.dwsl), feature_maps)
# 1/4
dws31 = self.add_sublayer(
"conv3_1",
sublayer=DepthwiseSeparable(
in_channels=int(128 * scale),
out_channels1=128,
out_channels2=128,
num_groups=128,
stride=1,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv3_1"))
self.dwsl.append(dws31)
self._update_out_channels(128, len(self.dwsl), feature_maps)
dws32 = self.add_sublayer(
"conv3_2",
sublayer=DepthwiseSeparable(
in_channels=int(128 * scale),
out_channels1=128,
out_channels2=256,
num_groups=128,
stride=2,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv3_2"))
self.dwsl.append(dws32)
self._update_out_channels(256, len(self.dwsl), feature_maps)
# 1/8
dws41 = self.add_sublayer(
"conv4_1",
sublayer=DepthwiseSeparable(
in_channels=int(256 * scale),
out_channels1=256,
out_channels2=256,
num_groups=256,
stride=1,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv4_1"))
self.dwsl.append(dws41)
self._update_out_channels(256, len(self.dwsl), feature_maps)
dws42 = self.add_sublayer(
"conv4_2",
sublayer=DepthwiseSeparable(
in_channels=int(256 * scale),
out_channels1=256,
out_channels2=512,
num_groups=256,
stride=2,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv4_2"))
self.dwsl.append(dws42)
self._update_out_channels(512, len(self.dwsl), feature_maps)
# 1/16
for i in range(5):
tmp = self.add_sublayer(
"conv5_" + str(i + 1),
sublayer=DepthwiseSeparable(
in_channels=512,
out_channels1=512,
out_channels2=512,
num_groups=512,
stride=1,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv5_" + str(i + 1)))
self.dwsl.append(tmp)
self._update_out_channels(512, len(self.dwsl), feature_maps)
dws56 = self.add_sublayer(
"conv5_6",
sublayer=DepthwiseSeparable(
in_channels=int(512 * scale),
out_channels1=512,
out_channels2=1024,
num_groups=512,
stride=2,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv5_6"))
self.dwsl.append(dws56)
self._update_out_channels(1024, len(self.dwsl), feature_maps)
# 1/32
dws6 = self.add_sublayer(
"conv6",
sublayer=DepthwiseSeparable(
in_channels=int(1024 * scale),
out_channels1=1024,
out_channels2=1024,
num_groups=1024,
stride=1,
scale=scale,
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv6"))
self.dwsl.append(dws6)
self._update_out_channels(1024, len(self.dwsl), feature_maps)
if self.with_extra_blocks:
self.extra_blocks = []
for i, block_filter in enumerate(self.extra_block_filters):
in_c = 1024 if i == 0 else self.extra_block_filters[i - 1][1]
conv_extra = self.add_sublayer(
"conv7_" + str(i + 1),
sublayer=ExtraBlock(
in_c,
block_filter[0],
block_filter[1],
conv_lr=conv_learning_rate,
conv_decay=conv_decay,
norm_decay=norm_decay,
norm_type=norm_type,
name="conv7_" + str(i + 1)))
self.extra_blocks.append(conv_extra)
self._update_out_channels(
block_filter[1],
len(self.dwsl) + len(self.extra_blocks), feature_maps)
def _update_out_channels(self, channel, feature_idx, feature_maps):
if feature_idx in feature_maps:
self._out_channels.append(channel)
def forward(self, inputs):
outs = []
y = self.conv1(inputs['image'])
for i, block in enumerate(self.dwsl):
y = block(y)
if i + 1 in self.feature_maps:
outs.append(y)
if not self.with_extra_blocks:
return outs
y = outs[-1]
for i, block in enumerate(self.extra_blocks):
idx = i + len(self.dwsl)
y = block(y)
if idx + 1 in self.feature_maps:
outs.append(y)
return outs
@property
def out_shape(self):
return [ShapeSpec(channels=c) for c in self._out_channels]