PulseFocusPlatform/static/configs/faster_rcnn_r50_vd_1x.yml

94 lines
1.8 KiB
YAML

architecture: FasterRCNN
use_gpu: true
max_iters: 180000
log_iter: 20
save_dir: output/faster-r50-vd-c4-1x
snapshot_iter: 10000
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
metric: COCO
weights: output/faster_rcnn_r50_vd_1x/model_final
num_classes: 81
FasterRCNN:
backbone: ResNet
rpn_head: RPNHead
roi_extractor: RoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
norm_type: affine_channel
depth: 50
feature_maps: 4
freeze_at: 2
variant: d
ResNetC5:
depth: 50
norm_type: affine_channel
variant: d
RPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
use_random: true
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 12000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 6000
post_nms_top_n: 1000
RoIAlign:
resolution: 14
sampling_ratio: 0
spatial_scale: 0.0625
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: ResNetC5
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [120000, 160000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
_READER_: 'faster_reader.yml'