forked from PulseFocusPlatform/PulseFocusPlatform
122 lines
4.4 KiB
Python
122 lines
4.4 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import sys
|
|
|
|
# add python path of PadleDetection to sys.path
|
|
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
|
|
if parent_path not in sys.path:
|
|
sys.path.append(parent_path)
|
|
|
|
from paddle import fluid
|
|
|
|
import logging
|
|
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
|
|
logging.basicConfig(level=logging.INFO, format=FORMAT)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
try:
|
|
from ppdet.core.workspace import load_config, merge_config, create
|
|
from ppdet.utils.cli import ArgsParser
|
|
from ppdet.utils.check import check_config, check_version, enable_static_mode
|
|
import ppdet.utils.checkpoint as checkpoint
|
|
from ppdet.utils.export_utils import dump_infer_config, prune_feed_vars
|
|
except ImportError as e:
|
|
if sys.argv[0].find('static') >= 0:
|
|
logger.error("Importing ppdet failed when running static model "
|
|
"with error: {}\n"
|
|
"please try:\n"
|
|
"\t1. run static model under PaddleDetection/static "
|
|
"directory\n"
|
|
"\t2. run 'pip uninstall ppdet' to uninstall ppdet "
|
|
"dynamic version firstly.".format(e))
|
|
sys.exit(-1)
|
|
else:
|
|
raise e
|
|
|
|
|
|
def save_serving_model(FLAGS, exe, feed_vars, test_fetches, infer_prog):
|
|
cfg_name = os.path.basename(FLAGS.config).split('.')[0]
|
|
save_dir = os.path.join(FLAGS.output_dir, cfg_name)
|
|
feed_var_names = [var.name for var in feed_vars.values()]
|
|
fetch_list = sorted(test_fetches.items(), key=lambda i: i[0])
|
|
target_vars = [var[1] for var in fetch_list]
|
|
feed_var_names = prune_feed_vars(feed_var_names, target_vars, infer_prog)
|
|
serving_client = os.path.join(FLAGS.output_dir, 'serving_client')
|
|
serving_server = os.path.join(FLAGS.output_dir, 'serving_server')
|
|
logger.info(
|
|
"Export serving model to {}, client side: {}, server side: {}. input: {}, output: "
|
|
"{}...".format(FLAGS.output_dir, serving_client, serving_server,
|
|
feed_var_names, [str(var.name) for var in target_vars]))
|
|
feed_dict = {x: infer_prog.global_block().var(x) for x in feed_var_names}
|
|
fetch_dict = {x.name: x for x in target_vars}
|
|
import paddle_serving_client.io as serving_io
|
|
serving_client = os.path.join(save_dir, 'serving_client')
|
|
serving_server = os.path.join(save_dir, 'serving_server')
|
|
serving_io.save_model(
|
|
client_config_folder=serving_client,
|
|
server_model_folder=serving_server,
|
|
feed_var_dict=feed_dict,
|
|
fetch_var_dict=fetch_dict,
|
|
main_program=infer_prog)
|
|
|
|
|
|
def main():
|
|
cfg = load_config(FLAGS.config)
|
|
merge_config(FLAGS.opt)
|
|
check_config(cfg)
|
|
check_version()
|
|
|
|
main_arch = cfg.architecture
|
|
|
|
# Use CPU for exporting inference model instead of GPU
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
|
|
model = create(main_arch)
|
|
|
|
startup_prog = fluid.Program()
|
|
infer_prog = fluid.Program()
|
|
with fluid.program_guard(infer_prog, startup_prog):
|
|
with fluid.unique_name.guard():
|
|
inputs_def = cfg['TestReader']['inputs_def']
|
|
inputs_def['use_dataloader'] = False
|
|
feed_vars, _ = model.build_inputs(**inputs_def)
|
|
test_fetches = model.test(feed_vars)
|
|
infer_prog = infer_prog.clone(True)
|
|
|
|
exe.run(startup_prog)
|
|
checkpoint.load_params(exe, infer_prog, cfg.weights)
|
|
|
|
save_serving_model(FLAGS, exe, feed_vars, test_fetches, infer_prog)
|
|
dump_infer_config(FLAGS, cfg)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
enable_static_mode()
|
|
parser = ArgsParser()
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="output",
|
|
help="Directory for storing the output model files.")
|
|
|
|
FLAGS = parser.parse_args()
|
|
main()
|