PulseFocusPlatform/static/ppdet/modeling/losses/iou_aware_loss.py

78 lines
2.9 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import fluid
from ppdet.core.workspace import register, serializable
from .iou_loss import IouLoss
__all__ = ['IouAwareLoss']
@register
@serializable
class IouAwareLoss(IouLoss):
"""
iou aware loss, see https://arxiv.org/abs/1912.05992
Args:
loss_weight (float): iou aware loss weight, default is 1.0
max_height (int): max height of input to support random shape input
max_width (int): max width of input to support random shape input
"""
def __init__(self, loss_weight=1.0, max_height=608, max_width=608):
super(IouAwareLoss, self).__init__(
loss_weight=loss_weight, max_height=max_height, max_width=max_width)
def __call__(self,
ioup,
x,
y,
w,
h,
tx,
ty,
tw,
th,
anchors,
downsample_ratio,
batch_size,
scale_x_y,
eps=1.e-10):
'''
Args:
ioup ([Variables]): the predicted iou
x | y | w | h ([Variables]): the output of yolov3 for encoded x|y|w|h
tx |ty |tw |th ([Variables]): the target of yolov3 for encoded x|y|w|h
anchors ([float]): list of anchors for current output layer
downsample_ratio (float): the downsample ratio for current output layer
batch_size (int): training batch size
eps (float): the decimal to prevent the denominator eqaul zero
'''
pred = self._bbox_transform(x, y, w, h, anchors, downsample_ratio,
batch_size, False, scale_x_y, eps)
gt = self._bbox_transform(tx, ty, tw, th, anchors, downsample_ratio,
batch_size, True, scale_x_y, eps)
iouk = self._iou(pred, gt, ioup, eps)
iouk.stop_gradient = True
loss_iou_aware = fluid.layers.sigmoid_cross_entropy_with_logits(ioup,
iouk)
loss_iou_aware = loss_iou_aware * self._loss_weight
return loss_iou_aware