PulseFocusPlatform/static/ppdet/modeling/losses/ssd_with_lmk_loss.py

241 lines
10 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddle.fluid.layer_helper import LayerHelper
import paddle.fluid.layers as layers
from paddle.fluid.layers import (tensor, iou_similarity, bipartite_match,
target_assign, box_coder)
from ppdet.core.workspace import register, serializable
__all__ = ['SSDWithLmkLoss']
@register
@serializable
class SSDWithLmkLoss(object):
"""
ssd_with_lmk_loss function.
Args:
background_label (int): The index of background label, 0 by default.
overlap_threshold (float): If match_type is `per_prediction`,
use `overlap_threshold` to determine the extra matching bboxes
when finding matched boxes. 0.5 by default.
neg_pos_ratio (float): The ratio of the negative boxes to the positive
boxes, used only when mining_type is `max_negative`, 3.0 by default.
neg_overlap (float): The negative overlap upper bound for the unmatched
predictions. Use only when mining_type is `max_negative`, 0.5 by default.
loc_loss_weight (float): Weight for localization loss, 1.0 by default.
conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
match_type (str): The type of matching method during training, should be
`bipartite` or `per_prediction`, `per_prediction` by default.
normalize (bool): Whether to normalize the loss by the total number of
output locations, True by default.
"""
def __init__(self,
background_label=0,
overlap_threshold=0.5,
neg_pos_ratio=3.0,
neg_overlap=0.5,
loc_loss_weight=1.0,
conf_loss_weight=1.0,
match_type='per_prediction',
normalize=True):
super(SSDWithLmkLoss, self).__init__()
self.background_label = background_label
self.overlap_threshold = overlap_threshold
self.neg_pos_ratio = neg_pos_ratio
self.neg_overlap = neg_overlap
self.loc_loss_weight = loc_loss_weight
self.conf_loss_weight = conf_loss_weight
self.match_type = match_type
self.normalize = normalize
def __call__(self,
location,
confidence,
gt_box,
gt_label,
landmark_predict,
lmk_label,
lmk_ignore_flag,
prior_box,
prior_box_var=None):
def _reshape_to_2d(var):
return layers.flatten(x=var, axis=2)
helper = LayerHelper('ssd_loss') #, **locals())
# Only support mining_type == 'max_negative' now.
mining_type = 'max_negative'
# The max `sample_size` of negative box, used only
# when mining_type is `hard_example`.
sample_size = None
num, num_prior, num_class = confidence.shape
conf_shape = layers.shape(confidence)
# 1. Find matched boundding box by prior box.
# 1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
iou = iou_similarity(x=gt_box, y=prior_box)
# 1.2 Compute matched boundding box by bipartite matching algorithm.
matched_indices, matched_dist = bipartite_match(iou, self.match_type,
self.overlap_threshold)
# 2. Compute confidence for mining hard examples
# 2.1. Get the target label based on matched indices
gt_label = layers.reshape(
x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
gt_label.stop_gradient = True
target_label, _ = target_assign(
gt_label, matched_indices, mismatch_value=self.background_label)
# 2.2. Compute confidence loss.
# Reshape confidence to 2D tensor.
confidence = _reshape_to_2d(confidence)
target_label = tensor.cast(x=target_label, dtype='int64')
target_label = _reshape_to_2d(target_label)
target_label.stop_gradient = True
conf_loss = layers.softmax_with_cross_entropy(confidence, target_label)
# 3. Mining hard examples
actual_shape = layers.slice(conf_shape, axes=[0], starts=[0], ends=[2])
actual_shape.stop_gradient = True
conf_loss = layers.reshape(
x=conf_loss, shape=(-1, 0), actual_shape=actual_shape)
conf_loss.stop_gradient = True
neg_indices = helper.create_variable_for_type_inference(dtype='int32')
updated_matched_indices = helper.create_variable_for_type_inference(
dtype=matched_indices.dtype)
helper.append_op(
type='mine_hard_examples',
inputs={
'ClsLoss': conf_loss,
'LocLoss': None,
'MatchIndices': matched_indices,
'MatchDist': matched_dist,
},
outputs={
'NegIndices': neg_indices,
'UpdatedMatchIndices': updated_matched_indices
},
attrs={
'neg_pos_ratio': self.neg_pos_ratio,
'neg_dist_threshold': self.neg_overlap,
'mining_type': mining_type,
'sample_size': sample_size,
})
# 4. Assign classification and regression targets
# 4.1. Encoded bbox according to the prior boxes.
encoded_bbox = box_coder(
prior_box=prior_box,
prior_box_var=prior_box_var,
target_box=gt_box,
code_type='encode_center_size')
# 4.2. Assign regression targets
target_bbox, target_loc_weight = target_assign(
encoded_bbox,
updated_matched_indices,
mismatch_value=self.background_label)
# 4.3. Assign classification targets
target_label, target_conf_weight = target_assign(
gt_label,
updated_matched_indices,
negative_indices=neg_indices,
mismatch_value=self.background_label)
target_loc_weight = target_loc_weight * target_label
encoded_lmk_label = self.decode_lmk(lmk_label, prior_box, prior_box_var)
target_lmk, target_lmk_weight = target_assign(
encoded_lmk_label,
updated_matched_indices,
mismatch_value=self.background_label)
lmk_ignore_flag = layers.reshape(
x=lmk_ignore_flag,
shape=(len(lmk_ignore_flag.shape) - 1) * (0, ) + (-1, 1))
target_ignore, nouse = target_assign(
lmk_ignore_flag,
updated_matched_indices,
mismatch_value=self.background_label)
target_lmk_weight = target_lmk_weight * target_ignore
landmark_predict = _reshape_to_2d(landmark_predict)
target_lmk = _reshape_to_2d(target_lmk)
target_lmk_weight = _reshape_to_2d(target_lmk_weight)
lmk_loss = layers.smooth_l1(landmark_predict, target_lmk)
lmk_loss = lmk_loss * target_lmk_weight
target_lmk.stop_gradient = True
target_lmk_weight.stop_gradient = True
target_ignore.stop_gradient = True
nouse.stop_gradient = True
# 5. Compute loss.
# 5.1 Compute confidence loss.
target_label = _reshape_to_2d(target_label)
target_label = tensor.cast(x=target_label, dtype='int64')
conf_loss = layers.softmax_with_cross_entropy(confidence, target_label)
target_conf_weight = _reshape_to_2d(target_conf_weight)
conf_loss = conf_loss * target_conf_weight
# the target_label and target_conf_weight do not have gradient.
target_label.stop_gradient = True
target_conf_weight.stop_gradient = True
# 5.2 Compute regression loss.
location = _reshape_to_2d(location)
target_bbox = _reshape_to_2d(target_bbox)
loc_loss = layers.smooth_l1(location, target_bbox)
target_loc_weight = _reshape_to_2d(target_loc_weight)
loc_loss = loc_loss * target_loc_weight
# the target_bbox and target_loc_weight do not have gradient.
target_bbox.stop_gradient = True
target_loc_weight.stop_gradient = True
# 5.3 Compute overall weighted loss.
loss = self.conf_loss_weight * conf_loss + self.loc_loss_weight * loc_loss + 0.4 * lmk_loss
# reshape to [N, Np], N is the batch size and Np is the prior box number.
loss = layers.reshape(x=loss, shape=(-1, 0), actual_shape=actual_shape)
loss = layers.reduce_sum(loss, dim=1, keep_dim=True)
if self.normalize:
normalizer = layers.reduce_sum(target_loc_weight) + 1
loss = loss / normalizer
return loss
def decode_lmk(self, lmk_label, prior_box, prior_box_var):
label0, label1, label2, label3, label4 = fluid.layers.split(
lmk_label, num_or_sections=5, dim=1)
lmk_labels_list = [label0, label1, label2, label3, label4]
encoded_lmk_list = []
for label in lmk_labels_list:
concat_label = fluid.layers.concat([label, label], axis=1)
encoded_label = box_coder(
prior_box=prior_box,
prior_box_var=prior_box_var,
target_box=concat_label,
code_type='encode_center_size')
encoded_lmk_label, _ = fluid.layers.split(
encoded_label, num_or_sections=2, dim=2)
encoded_lmk_list.append(encoded_lmk_label)
encoded_lmk_concat = fluid.layers.concat(
[
encoded_lmk_list[0], encoded_lmk_list[1], encoded_lmk_list[2],
encoded_lmk_list[3], encoded_lmk_list[4]
],
axis=2)
return encoded_lmk_concat