forked from PulseFocusPlatform/PulseFocusPlatform
301 lines
12 KiB
Python
301 lines
12 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from scipy.optimize import linear_sum_assignment
|
|
from collections import defaultdict
|
|
import numpy as np
|
|
import math
|
|
from keypoint_preprocess import get_affine_mat_kernel, get_affine_transform
|
|
|
|
|
|
class HrHRNetPostProcess(object):
|
|
'''
|
|
HrHRNet postprocess contain:
|
|
1) get topk keypoints in the output heatmap
|
|
2) sample the tagmap's value corresponding to each of the topk coordinate
|
|
3) match different joints to combine to some people with Hungary algorithm
|
|
4) adjust the coordinate by +-0.25 to decrease error std
|
|
5) salvage missing joints by check positivity of heatmap - tagdiff_norm
|
|
Args:
|
|
max_num_people (int): max number of people support in postprocess
|
|
heat_thresh (float): value of topk below this threshhold will be ignored
|
|
tag_thresh (float): coord's value sampled in tagmap below this threshold belong to same people for init
|
|
|
|
inputs(list[heatmap]): the output list of modle, [heatmap, heatmap_maxpool, tagmap], heatmap_maxpool used to get topk
|
|
original_height, original_width (float): the original image size
|
|
'''
|
|
|
|
def __init__(self, max_num_people=30, heat_thresh=0.2, tag_thresh=1.):
|
|
self.max_num_people = max_num_people
|
|
self.heat_thresh = heat_thresh
|
|
self.tag_thresh = tag_thresh
|
|
|
|
def lerp(self, j, y, x, heatmap):
|
|
H, W = heatmap.shape[-2:]
|
|
left = np.clip(x - 1, 0, W - 1)
|
|
right = np.clip(x + 1, 0, W - 1)
|
|
up = np.clip(y - 1, 0, H - 1)
|
|
down = np.clip(y + 1, 0, H - 1)
|
|
offset_y = np.where(heatmap[j, down, x] > heatmap[j, up, x], 0.25,
|
|
-0.25)
|
|
offset_x = np.where(heatmap[j, y, right] > heatmap[j, y, left], 0.25,
|
|
-0.25)
|
|
return offset_y + 0.5, offset_x + 0.5
|
|
|
|
def __call__(self, heatmap, tagmap, heat_k, inds_k, original_height,
|
|
original_width):
|
|
|
|
N, J, H, W = heatmap.shape
|
|
assert N == 1, "only support batch size 1"
|
|
heatmap = heatmap[0]
|
|
tagmap = tagmap[0]
|
|
heats = heat_k[0]
|
|
inds_np = inds_k[0]
|
|
y = inds_np // W
|
|
x = inds_np % W
|
|
tags = tagmap[np.arange(J)[None, :].repeat(self.max_num_people),
|
|
y.flatten(), x.flatten()].reshape(J, -1, tagmap.shape[-1])
|
|
coords = np.stack((y, x), axis=2)
|
|
# threshold
|
|
mask = heats > self.heat_thresh
|
|
# cluster
|
|
cluster = defaultdict(lambda: {
|
|
'coords': np.zeros((J, 2), dtype=np.float32),
|
|
'scores': np.zeros(J, dtype=np.float32),
|
|
'tags': []
|
|
})
|
|
for jid, m in enumerate(mask):
|
|
num_valid = m.sum()
|
|
if num_valid == 0:
|
|
continue
|
|
valid_inds = np.where(m)[0]
|
|
valid_tags = tags[jid, m, :]
|
|
if len(cluster) == 0: # initialize
|
|
for i in valid_inds:
|
|
tag = tags[jid, i]
|
|
key = tag[0]
|
|
cluster[key]['tags'].append(tag)
|
|
cluster[key]['scores'][jid] = heats[jid, i]
|
|
cluster[key]['coords'][jid] = coords[jid, i]
|
|
continue
|
|
candidates = list(cluster.keys())[:self.max_num_people]
|
|
centroids = [
|
|
np.mean(
|
|
cluster[k]['tags'], axis=0) for k in candidates
|
|
]
|
|
num_clusters = len(centroids)
|
|
# shape is (num_valid, num_clusters, tag_dim)
|
|
dist = valid_tags[:, None, :] - np.array(centroids)[None, ...]
|
|
l2_dist = np.linalg.norm(dist, ord=2, axis=2)
|
|
# modulate dist with heat value, see `use_detection_val`
|
|
cost = np.round(l2_dist) * 100 - heats[jid, m, None]
|
|
# pad the cost matrix, otherwise new pose are ignored
|
|
if num_valid > num_clusters:
|
|
cost = np.pad(cost, ((0, 0), (0, num_valid - num_clusters)),
|
|
constant_values=((0, 0), (0, 1e-10)))
|
|
rows, cols = linear_sum_assignment(cost)
|
|
for y, x in zip(rows, cols):
|
|
tag = tags[jid, y]
|
|
if y < num_valid and x < num_clusters and \
|
|
l2_dist[y, x] < self.tag_thresh:
|
|
key = candidates[x] # merge to cluster
|
|
else:
|
|
key = tag[0] # initialize new cluster
|
|
cluster[key]['tags'].append(tag)
|
|
cluster[key]['scores'][jid] = heats[jid, y]
|
|
cluster[key]['coords'][jid] = coords[jid, y]
|
|
|
|
# shape is [k, J, 2] and [k, J]
|
|
pose_tags = np.array([cluster[k]['tags'] for k in cluster])
|
|
pose_coords = np.array([cluster[k]['coords'] for k in cluster])
|
|
pose_scores = np.array([cluster[k]['scores'] for k in cluster])
|
|
valid = pose_scores > 0
|
|
|
|
pose_kpts = np.zeros((pose_scores.shape[0], J, 3), dtype=np.float32)
|
|
if valid.sum() == 0:
|
|
return pose_kpts, pose_kpts
|
|
|
|
# refine coords
|
|
valid_coords = pose_coords[valid].astype(np.int32)
|
|
y = valid_coords[..., 0].flatten()
|
|
x = valid_coords[..., 1].flatten()
|
|
_, j = np.nonzero(valid)
|
|
offsets = self.lerp(j, y, x, heatmap)
|
|
pose_coords[valid, 0] += offsets[0]
|
|
pose_coords[valid, 1] += offsets[1]
|
|
|
|
# mean score before salvage
|
|
mean_score = pose_scores.mean(axis=1)
|
|
pose_kpts[valid, 2] = pose_scores[valid]
|
|
|
|
# salvage missing joints
|
|
if True:
|
|
for pid, coords in enumerate(pose_coords):
|
|
tag_mean = np.array(pose_tags[pid]).mean(axis=0)
|
|
norm = np.sum((tagmap - tag_mean)**2, axis=3)**0.5
|
|
score = heatmap - np.round(norm) # (J, H, W)
|
|
flat_score = score.reshape(J, -1)
|
|
max_inds = np.argmax(flat_score, axis=1)
|
|
max_scores = np.max(flat_score, axis=1)
|
|
salvage_joints = (pose_scores[pid] == 0) & (max_scores > 0)
|
|
if salvage_joints.sum() == 0:
|
|
continue
|
|
y = max_inds[salvage_joints] // W
|
|
x = max_inds[salvage_joints] % W
|
|
offsets = self.lerp(salvage_joints.nonzero()[0], y, x, heatmap)
|
|
y = y.astype(np.float32) + offsets[0]
|
|
x = x.astype(np.float32) + offsets[1]
|
|
pose_coords[pid][salvage_joints, 0] = y
|
|
pose_coords[pid][salvage_joints, 1] = x
|
|
pose_kpts[pid][salvage_joints, 2] = max_scores[salvage_joints]
|
|
pose_kpts[..., :2] = transpred(pose_coords[..., :2][..., ::-1],
|
|
original_height, original_width,
|
|
min(H, W))
|
|
return pose_kpts, mean_score
|
|
|
|
|
|
def transpred(kpts, h, w, s):
|
|
trans, _ = get_affine_mat_kernel(h, w, s, inv=True)
|
|
|
|
return warp_affine_joints(kpts[..., :2].copy(), trans)
|
|
|
|
|
|
def warp_affine_joints(joints, mat):
|
|
"""Apply affine transformation defined by the transform matrix on the
|
|
joints.
|
|
|
|
Args:
|
|
joints (np.ndarray[..., 2]): Origin coordinate of joints.
|
|
mat (np.ndarray[3, 2]): The affine matrix.
|
|
|
|
Returns:
|
|
matrix (np.ndarray[..., 2]): Result coordinate of joints.
|
|
"""
|
|
joints = np.array(joints)
|
|
shape = joints.shape
|
|
joints = joints.reshape(-1, 2)
|
|
return np.dot(np.concatenate(
|
|
(joints, joints[:, 0:1] * 0 + 1), axis=1),
|
|
mat.T).reshape(shape)
|
|
|
|
|
|
class HRNetPostProcess(object):
|
|
def flip_back(self, output_flipped, matched_parts):
|
|
assert output_flipped.ndim == 4,\
|
|
'output_flipped should be [batch_size, num_joints, height, width]'
|
|
|
|
output_flipped = output_flipped[:, :, :, ::-1]
|
|
|
|
for pair in matched_parts:
|
|
tmp = output_flipped[:, pair[0], :, :].copy()
|
|
output_flipped[:, pair[0], :, :] = output_flipped[:, pair[1], :, :]
|
|
output_flipped[:, pair[1], :, :] = tmp
|
|
|
|
return output_flipped
|
|
|
|
def get_max_preds(self, heatmaps):
|
|
'''get predictions from score maps
|
|
|
|
Args:
|
|
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
|
|
|
|
Returns:
|
|
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
|
|
maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
|
|
'''
|
|
assert isinstance(heatmaps,
|
|
np.ndarray), 'heatmaps should be numpy.ndarray'
|
|
assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'
|
|
|
|
batch_size = heatmaps.shape[0]
|
|
num_joints = heatmaps.shape[1]
|
|
width = heatmaps.shape[3]
|
|
heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1))
|
|
idx = np.argmax(heatmaps_reshaped, 2)
|
|
maxvals = np.amax(heatmaps_reshaped, 2)
|
|
|
|
maxvals = maxvals.reshape((batch_size, num_joints, 1))
|
|
idx = idx.reshape((batch_size, num_joints, 1))
|
|
|
|
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
|
|
|
|
preds[:, :, 0] = (preds[:, :, 0]) % width
|
|
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
|
|
|
|
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
|
|
pred_mask = pred_mask.astype(np.float32)
|
|
|
|
preds *= pred_mask
|
|
|
|
return preds, maxvals
|
|
|
|
def get_final_preds(self, heatmaps, center, scale):
|
|
"""the highest heatvalue location with a quarter offset in the
|
|
direction from the highest response to the second highest response.
|
|
|
|
Args:
|
|
heatmaps (numpy.ndarray): The predicted heatmaps
|
|
center (numpy.ndarray): The boxes center
|
|
scale (numpy.ndarray): The scale factor
|
|
|
|
Returns:
|
|
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
|
|
maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
|
|
"""
|
|
|
|
coords, maxvals = self.get_max_preds(heatmaps)
|
|
|
|
heatmap_height = heatmaps.shape[2]
|
|
heatmap_width = heatmaps.shape[3]
|
|
|
|
for n in range(coords.shape[0]):
|
|
for p in range(coords.shape[1]):
|
|
hm = heatmaps[n][p]
|
|
px = int(math.floor(coords[n][p][0] + 0.5))
|
|
py = int(math.floor(coords[n][p][1] + 0.5))
|
|
if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1:
|
|
diff = np.array([
|
|
hm[py][px + 1] - hm[py][px - 1],
|
|
hm[py + 1][px] - hm[py - 1][px]
|
|
])
|
|
coords[n][p] += np.sign(diff) * .25
|
|
preds = coords.copy()
|
|
|
|
# Transform back
|
|
for i in range(coords.shape[0]):
|
|
preds[i] = transform_preds(coords[i], center[i], scale[i],
|
|
[heatmap_width, heatmap_height])
|
|
|
|
return preds, maxvals
|
|
|
|
def __call__(self, output, center, scale):
|
|
preds, maxvals = self.get_final_preds(output, center, scale)
|
|
return np.concatenate(
|
|
(preds, maxvals), axis=-1), np.mean(
|
|
maxvals, axis=1)
|
|
|
|
|
|
def transform_preds(coords, center, scale, output_size):
|
|
target_coords = np.zeros(coords.shape)
|
|
trans = get_affine_transform(center, scale * 200, 0, output_size, inv=1)
|
|
for p in range(coords.shape[0]):
|
|
target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans)
|
|
return target_coords
|
|
|
|
|
|
def affine_transform(pt, t):
|
|
new_pt = np.array([pt[0], pt[1], 1.]).T
|
|
new_pt = np.dot(t, new_pt)
|
|
return new_pt[:2]
|