forked from PulseFocusPlatform/PulseFocusPlatform
268 lines
7.6 KiB
Python
268 lines
7.6 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
This code is borrow from https://github.com/Zhongdao/Towards-Realtime-MOT/blob/master/tracker/multitracker.py
|
|
"""
|
|
|
|
import numpy as np
|
|
from collections import deque, OrderedDict
|
|
from ..matching import jde_matching as matching
|
|
from ppdet.core.workspace import register, serializable
|
|
|
|
__all__ = [
|
|
'TrackState',
|
|
'BaseTrack',
|
|
'STrack',
|
|
'joint_stracks',
|
|
'sub_stracks',
|
|
'remove_duplicate_stracks',
|
|
]
|
|
|
|
|
|
class TrackState(object):
|
|
New = 0
|
|
Tracked = 1
|
|
Lost = 2
|
|
Removed = 3
|
|
|
|
|
|
@register
|
|
@serializable
|
|
class BaseTrack(object):
|
|
_count = 0
|
|
|
|
track_id = 0
|
|
is_activated = False
|
|
state = TrackState.New
|
|
|
|
history = OrderedDict()
|
|
features = []
|
|
curr_feature = None
|
|
score = 0
|
|
start_frame = 0
|
|
frame_id = 0
|
|
time_since_update = 0
|
|
|
|
# multi-camera
|
|
location = (np.inf, np.inf)
|
|
|
|
@property
|
|
def end_frame(self):
|
|
return self.frame_id
|
|
|
|
@staticmethod
|
|
def next_id():
|
|
BaseTrack._count += 1
|
|
return BaseTrack._count
|
|
|
|
def activate(self, *args):
|
|
raise NotImplementedError
|
|
|
|
def predict(self):
|
|
raise NotImplementedError
|
|
|
|
def update(self, *args, **kwargs):
|
|
raise NotImplementedError
|
|
|
|
def mark_lost(self):
|
|
self.state = TrackState.Lost
|
|
|
|
def mark_removed(self):
|
|
self.state = TrackState.Removed
|
|
|
|
|
|
@register
|
|
@serializable
|
|
class STrack(BaseTrack):
|
|
def __init__(self, tlwh, score, temp_feat, buffer_size=30):
|
|
# wait activate
|
|
self._tlwh = np.asarray(tlwh, dtype=np.float)
|
|
self.kalman_filter = None
|
|
self.mean, self.covariance = None, None
|
|
self.is_activated = False
|
|
|
|
self.score = score
|
|
self.tracklet_len = 0
|
|
|
|
self.smooth_feat = None
|
|
self.update_features(temp_feat)
|
|
self.features = deque([], maxlen=buffer_size)
|
|
self.alpha = 0.9
|
|
|
|
def update_features(self, feat):
|
|
feat /= np.linalg.norm(feat)
|
|
self.curr_feat = feat
|
|
if self.smooth_feat is None:
|
|
self.smooth_feat = feat
|
|
else:
|
|
self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha
|
|
) * feat
|
|
self.features.append(feat)
|
|
self.smooth_feat /= np.linalg.norm(self.smooth_feat)
|
|
|
|
def predict(self):
|
|
mean_state = self.mean.copy()
|
|
if self.state != TrackState.Tracked:
|
|
mean_state[7] = 0
|
|
self.mean, self.covariance = self.kalman_filter.predict(mean_state,
|
|
self.covariance)
|
|
|
|
@staticmethod
|
|
def multi_predict(stracks, kalman_filter):
|
|
if len(stracks) > 0:
|
|
multi_mean = np.asarray([st.mean.copy() for st in stracks])
|
|
multi_covariance = np.asarray([st.covariance for st in stracks])
|
|
for i, st in enumerate(stracks):
|
|
if st.state != TrackState.Tracked:
|
|
multi_mean[i][7] = 0
|
|
multi_mean, multi_covariance = kalman_filter.multi_predict(
|
|
multi_mean, multi_covariance)
|
|
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
|
|
stracks[i].mean = mean
|
|
stracks[i].covariance = cov
|
|
|
|
def activate(self, kalman_filter, frame_id):
|
|
"""Start a new tracklet"""
|
|
self.kalman_filter = kalman_filter
|
|
self.track_id = self.next_id()
|
|
self.mean, self.covariance = self.kalman_filter.initiate(
|
|
self.tlwh_to_xyah(self._tlwh))
|
|
|
|
self.tracklet_len = 0
|
|
self.state = TrackState.Tracked
|
|
if frame_id == 1:
|
|
self.is_activated = True
|
|
self.frame_id = frame_id
|
|
self.start_frame = frame_id
|
|
|
|
def re_activate(self, new_track, frame_id, new_id=False):
|
|
self.mean, self.covariance = self.kalman_filter.update(
|
|
self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh))
|
|
|
|
self.update_features(new_track.curr_feat)
|
|
self.tracklet_len = 0
|
|
self.state = TrackState.Tracked
|
|
self.is_activated = True
|
|
self.frame_id = frame_id
|
|
if new_id:
|
|
self.track_id = self.next_id()
|
|
|
|
def update(self, new_track, frame_id, update_feature=True):
|
|
self.frame_id = frame_id
|
|
self.tracklet_len += 1
|
|
|
|
new_tlwh = new_track.tlwh
|
|
self.mean, self.covariance = self.kalman_filter.update(
|
|
self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
|
|
self.state = TrackState.Tracked
|
|
self.is_activated = True
|
|
|
|
self.score = new_track.score
|
|
if update_feature:
|
|
self.update_features(new_track.curr_feat)
|
|
|
|
@property
|
|
def tlwh(self):
|
|
"""
|
|
Get current position in bounding box format `(top left x, top left y,
|
|
width, height)`.
|
|
"""
|
|
if self.mean is None:
|
|
return self._tlwh.copy()
|
|
ret = self.mean[:4].copy()
|
|
ret[2] *= ret[3]
|
|
ret[:2] -= ret[2:] / 2
|
|
return ret
|
|
|
|
@property
|
|
def tlbr(self):
|
|
"""
|
|
Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
|
|
`(top left, bottom right)`.
|
|
"""
|
|
ret = self.tlwh.copy()
|
|
ret[2:] += ret[:2]
|
|
return ret
|
|
|
|
@staticmethod
|
|
def tlwh_to_xyah(tlwh):
|
|
"""
|
|
Convert bounding box to format `(center x, center y, aspect ratio,
|
|
height)`, where the aspect ratio is `width / height`.
|
|
"""
|
|
ret = np.asarray(tlwh).copy()
|
|
ret[:2] += ret[2:] / 2
|
|
ret[2] /= ret[3]
|
|
return ret
|
|
|
|
def to_xyah(self):
|
|
return self.tlwh_to_xyah(self.tlwh)
|
|
|
|
@staticmethod
|
|
def tlbr_to_tlwh(tlbr):
|
|
ret = np.asarray(tlbr).copy()
|
|
ret[2:] -= ret[:2]
|
|
return ret
|
|
|
|
@staticmethod
|
|
def tlwh_to_tlbr(tlwh):
|
|
ret = np.asarray(tlwh).copy()
|
|
ret[2:] += ret[:2]
|
|
return ret
|
|
|
|
def __repr__(self):
|
|
return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame,
|
|
self.end_frame)
|
|
|
|
|
|
def joint_stracks(tlista, tlistb):
|
|
exists = {}
|
|
res = []
|
|
for t in tlista:
|
|
exists[t.track_id] = 1
|
|
res.append(t)
|
|
for t in tlistb:
|
|
tid = t.track_id
|
|
if not exists.get(tid, 0):
|
|
exists[tid] = 1
|
|
res.append(t)
|
|
return res
|
|
|
|
|
|
def sub_stracks(tlista, tlistb):
|
|
stracks = {}
|
|
for t in tlista:
|
|
stracks[t.track_id] = t
|
|
for t in tlistb:
|
|
tid = t.track_id
|
|
if stracks.get(tid, 0):
|
|
del stracks[tid]
|
|
return list(stracks.values())
|
|
|
|
|
|
def remove_duplicate_stracks(stracksa, stracksb):
|
|
pdist = matching.iou_distance(stracksa, stracksb)
|
|
pairs = np.where(pdist < 0.15)
|
|
dupa, dupb = list(), list()
|
|
for p, q in zip(*pairs):
|
|
timep = stracksa[p].frame_id - stracksa[p].start_frame
|
|
timeq = stracksb[q].frame_id - stracksb[q].start_frame
|
|
if timep > timeq:
|
|
dupb.append(q)
|
|
else:
|
|
dupa.append(p)
|
|
resa = [t for i, t in enumerate(stracksa) if not i in dupa]
|
|
resb = [t for i, t in enumerate(stracksb) if not i in dupb]
|
|
return resa, resb
|