forked from PulseFocusPlatform/PulseFocusPlatform
84 lines
2.7 KiB
Python
84 lines
2.7 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import print_function
|
|
from __future__ import division
|
|
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
|
|
class Gridmask(object):
|
|
def __init__(self,
|
|
use_h=True,
|
|
use_w=True,
|
|
rotate=1,
|
|
offset=False,
|
|
ratio=0.5,
|
|
mode=1,
|
|
prob=0.7,
|
|
upper_iter=360000):
|
|
super(Gridmask, self).__init__()
|
|
self.use_h = use_h
|
|
self.use_w = use_w
|
|
self.rotate = rotate
|
|
self.offset = offset
|
|
self.ratio = ratio
|
|
self.mode = mode
|
|
self.prob = prob
|
|
self.st_prob = prob
|
|
self.upper_iter = upper_iter
|
|
|
|
def __call__(self, x, curr_iter):
|
|
self.prob = self.st_prob * min(1, 1.0 * curr_iter / self.upper_iter)
|
|
if np.random.rand() > self.prob:
|
|
return x
|
|
h, w, _ = x.shape
|
|
hh = int(1.5 * h)
|
|
ww = int(1.5 * w)
|
|
d = np.random.randint(2, h)
|
|
self.l = min(max(int(d * self.ratio + 0.5), 1), d - 1)
|
|
mask = np.ones((hh, ww), np.float32)
|
|
st_h = np.random.randint(d)
|
|
st_w = np.random.randint(d)
|
|
if self.use_h:
|
|
for i in range(hh // d):
|
|
s = d * i + st_h
|
|
t = min(s + self.l, hh)
|
|
mask[s:t, :] *= 0
|
|
if self.use_w:
|
|
for i in range(ww // d):
|
|
s = d * i + st_w
|
|
t = min(s + self.l, ww)
|
|
mask[:, s:t] *= 0
|
|
|
|
r = np.random.randint(self.rotate)
|
|
mask = Image.fromarray(np.uint8(mask))
|
|
mask = mask.rotate(r)
|
|
mask = np.asarray(mask)
|
|
mask = mask[(hh - h) // 2:(hh - h) // 2 + h, (ww - w) // 2:(ww - w) // 2
|
|
+ w].astype(np.float32)
|
|
|
|
if self.mode == 1:
|
|
mask = 1 - mask
|
|
mask = np.expand_dims(mask, axis=-1)
|
|
if self.offset:
|
|
offset = (2 * (np.random.rand(h, w) - 0.5)).astype(np.float32)
|
|
x = (x * mask + offset * (1 - mask)).astype(x.dtype)
|
|
else:
|
|
x = (x * mask).astype(x.dtype)
|
|
|
|
return x
|