PulseFocusPlatform/static/ppdet/modeling/architectures/efficientdet.py

153 lines
5.0 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from collections import OrderedDict
import paddle.fluid as fluid
from ppdet.experimental import mixed_precision_global_state
from ppdet.core.workspace import register
__all__ = ['EfficientDet']
@register
class EfficientDet(object):
"""
EfficientDet architecture, see https://arxiv.org/abs/1911.09070
Args:
backbone (object): backbone instance
fpn (object): feature pyramid network instance
retina_head (object): `RetinaHead` instance
"""
__category__ = 'architecture'
__inject__ = ['backbone', 'fpn', 'efficient_head', 'anchor_grid']
def __init__(self,
backbone,
fpn,
efficient_head,
anchor_grid,
box_loss_weight=50.):
super(EfficientDet, self).__init__()
self.backbone = backbone
self.fpn = fpn
self.efficient_head = efficient_head
self.anchor_grid = anchor_grid
self.box_loss_weight = box_loss_weight
def build(self, feed_vars, mode='train'):
im = feed_vars['image']
if mode == 'train':
gt_labels = feed_vars['gt_label']
gt_targets = feed_vars['gt_target']
fg_num = feed_vars['fg_num']
else:
im_info = feed_vars['im_info']
mixed_precision_enabled = mixed_precision_global_state() is not None
if mixed_precision_enabled:
im = fluid.layers.cast(im, 'float16')
body_feats = self.backbone(im)
if mixed_precision_enabled:
body_feats = [fluid.layers.cast(f, 'float32') for f in body_feats]
body_feats = self.fpn(body_feats)
# XXX not used for training, but the parameters are needed when
# exporting inference model
anchors = self.anchor_grid()
if mode == 'train':
loss = self.efficient_head.get_loss(body_feats, gt_labels,
gt_targets, fg_num)
loss_cls = loss['loss_cls']
loss_bbox = loss['loss_bbox']
total_loss = loss_cls + self.box_loss_weight * loss_bbox
loss.update({'loss': total_loss})
return loss
else:
pred = self.efficient_head.get_prediction(body_feats, anchors,
im_info)
return pred
def _inputs_def(self, image_shape):
im_shape = [None] + image_shape
inputs_def = {
'image': {
'shape': im_shape,
'dtype': 'float32'
},
'im_info': {
'shape': [None, 3],
'dtype': 'float32'
},
'im_id': {
'shape': [None, 1],
'dtype': 'int64'
},
'im_shape': {
'shape': [None, 3],
'dtype': 'float32'
},
'fg_num': {
'shape': [None, 1],
'dtype': 'int32'
},
'gt_label': {
'shape': [None, None, 1],
'dtype': 'int32'
},
'gt_target': {
'shape': [None, None, 4],
'dtype': 'float32'
},
}
return inputs_def
def build_inputs(self,
image_shape=[3, None, None],
fields=[
'image', 'im_info', 'im_id', 'fg_num', 'gt_label',
'gt_target'
],
use_dataloader=True,
iterable=False):
inputs_def = self._inputs_def(image_shape)
feed_vars = OrderedDict([(key, fluid.data(
name=key,
shape=inputs_def[key]['shape'],
dtype=inputs_def[key]['dtype'])) for key in fields])
loader = fluid.io.DataLoader.from_generator(
feed_list=list(feed_vars.values()),
capacity=16,
use_double_buffer=True,
iterable=iterable) if use_dataloader else None
return feed_vars, loader
def train(self, feed_vars):
return self.build(feed_vars, 'train')
def eval(self, feed_vars):
return self.build(feed_vars, 'test')
def test(self, feed_vars, exclude_nms=False):
assert not exclude_nms, "exclude_nms for {} is not support currently".format(
self.__class__.__name__)
return self.build(feed_vars, 'test')