PulseFocusPlatform/static/ppdet/modeling/architectures/faceboxes.py

192 lines
7.0 KiB
Python

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import OrderedDict
from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay
from ppdet.core.workspace import register
from ppdet.modeling.ops import SSDOutputDecoder
__all__ = ['FaceBoxes']
@register
class FaceBoxes(object):
"""
FaceBoxes: A CPU Real-time Face Detector with High Accuracy.
see https://arxiv.org/abs/1708.05234
Args:
backbone (object): backbone instance
output_decoder (object): `SSDOutputDecoder` instance
densities (list|None): the densities of generated density prior boxes,
this attribute should be a list or tuple of integers.
fixed_sizes (list|None): the fixed sizes of generated density prior boxes,
this attribute should a list or tuple of same length with `densities`.
num_classes (int): number of output classes.
steps (list|None): step size of adjacent prior boxes on each feature map.
"""
__category__ = 'architecture'
__inject__ = ['backbone', 'output_decoder']
__shared__ = ['num_classes']
def __init__(self,
backbone="FaceBoxNet",
output_decoder=SSDOutputDecoder().__dict__,
densities=[[4, 2, 1], [1], [1]],
fixed_sizes=[[32., 64., 128.], [256.], [512.]],
num_classes=2,
steps=[8., 16., 32.]):
super(FaceBoxes, self).__init__()
self.backbone = backbone
self.num_classes = num_classes
self.output_decoder = output_decoder
if isinstance(output_decoder, dict):
self.output_decoder = SSDOutputDecoder(**output_decoder)
self.densities = densities
self.fixed_sizes = fixed_sizes
self.steps = steps
def build(self, feed_vars, mode='train'):
im = feed_vars['image']
if mode == 'train':
gt_bbox = feed_vars['gt_bbox']
gt_class = feed_vars['gt_class']
body_feats = self.backbone(im)
locs, confs, box, box_var = self._multi_box_head(
inputs=body_feats, image=im, num_classes=self.num_classes)
if mode == 'train':
loss = fluid.layers.ssd_loss(
locs,
confs,
gt_bbox,
gt_class,
box,
box_var,
overlap_threshold=0.35,
neg_overlap=0.35)
loss = fluid.layers.reduce_sum(loss)
return {'loss': loss}
else:
pred = self.output_decoder(locs, confs, box, box_var)
return {'bbox': pred}
def _multi_box_head(self, inputs, image, num_classes=2):
def permute_and_reshape(input, last_dim):
trans = fluid.layers.transpose(input, perm=[0, 2, 3, 1])
compile_shape = [0, -1, last_dim]
return fluid.layers.reshape(trans, shape=compile_shape)
def _is_list_or_tuple_(data):
return (isinstance(data, list) or isinstance(data, tuple))
locs, confs = [], []
boxes, vars = [], []
b_attr = ParamAttr(learning_rate=2., regularizer=L2Decay(0.))
for i, input in enumerate(inputs):
densities = self.densities[i]
fixed_sizes = self.fixed_sizes[i]
box, var = fluid.layers.density_prior_box(
input,
image,
densities=densities,
fixed_sizes=fixed_sizes,
fixed_ratios=[1.],
clip=False,
offset=0.5,
steps=[self.steps[i]] * 2)
num_boxes = box.shape[2]
box = fluid.layers.reshape(box, shape=[-1, 4])
var = fluid.layers.reshape(var, shape=[-1, 4])
num_loc_output = num_boxes * 4
num_conf_output = num_boxes * num_classes
# get loc
mbox_loc = fluid.layers.conv2d(
input, num_loc_output, 3, 1, 1, bias_attr=b_attr)
loc = permute_and_reshape(mbox_loc, 4)
# get conf
mbox_conf = fluid.layers.conv2d(
input, num_conf_output, 3, 1, 1, bias_attr=b_attr)
conf = permute_and_reshape(mbox_conf, 2)
locs.append(loc)
confs.append(conf)
boxes.append(box)
vars.append(var)
face_mbox_loc = fluid.layers.concat(locs, axis=1)
face_mbox_conf = fluid.layers.concat(confs, axis=1)
prior_boxes = fluid.layers.concat(boxes)
box_vars = fluid.layers.concat(vars)
return face_mbox_loc, face_mbox_conf, prior_boxes, box_vars
def _inputs_def(self, image_shape):
im_shape = [None] + image_shape
# yapf: disable
inputs_def = {
'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0},
'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0},
'gt_bbox': {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1},
'gt_class': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
'im_shape': {'shape': [None, 3], 'dtype': 'int32', 'lod_level': 0},
}
# yapf: enable
return inputs_def
def build_inputs(
self,
image_shape=[3, None, None],
fields=['image', 'im_id', 'gt_bbox', 'gt_class'], # for train
use_dataloader=True,
iterable=False):
inputs_def = self._inputs_def(image_shape)
feed_vars = OrderedDict([(key, fluid.data(
name=key,
shape=inputs_def[key]['shape'],
dtype=inputs_def[key]['dtype'],
lod_level=inputs_def[key]['lod_level'])) for key in fields])
loader = fluid.io.DataLoader.from_generator(
feed_list=list(feed_vars.values()),
capacity=16,
use_double_buffer=True,
iterable=iterable) if use_dataloader else None
return feed_vars, loader
def train(self, feed_vars):
return self.build(feed_vars, 'train')
def eval(self, feed_vars):
return self.build(feed_vars, 'eval')
def test(self, feed_vars, exclude_nms=False):
assert not exclude_nms, "exclude_nms for {} is not support currently".format(
self.__class__.__name__)
return self.build(feed_vars, 'test')
def is_bbox_normalized(self):
return True