PulseFocusPlatform/static/ppdet/modeling/architectures/mask_rcnn.py

344 lines
13 KiB
Python

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import OrderedDict
import copy
import paddle.fluid as fluid
from ppdet.experimental import mixed_precision_global_state
from ppdet.core.workspace import register
from .input_helper import multiscale_def
__all__ = ['MaskRCNN']
@register
class MaskRCNN(object):
"""
Mask R-CNN architecture, see https://arxiv.org/abs/1703.06870
Args:
backbone (object): backbone instance
rpn_head (object): `RPNhead` instance
bbox_assigner (object): `BBoxAssigner` instance
roi_extractor (object): ROI extractor instance
bbox_head (object): `BBoxHead` instance
mask_assigner (object): `MaskAssigner` instance
mask_head (object): `MaskHead` instance
fpn (object): feature pyramid network instance
"""
__category__ = 'architecture'
__inject__ = [
'backbone', 'rpn_head', 'bbox_assigner', 'roi_extractor', 'bbox_head',
'mask_assigner', 'mask_head', 'fpn'
]
def __init__(self,
backbone,
rpn_head,
bbox_head='BBoxHead',
bbox_assigner='BBoxAssigner',
roi_extractor='RoIAlign',
mask_assigner='MaskAssigner',
mask_head='MaskHead',
rpn_only=False,
fpn=None):
super(MaskRCNN, self).__init__()
self.backbone = backbone
self.rpn_head = rpn_head
self.bbox_assigner = bbox_assigner
self.roi_extractor = roi_extractor
self.bbox_head = bbox_head
self.mask_assigner = mask_assigner
self.mask_head = mask_head
self.rpn_only = rpn_only
self.fpn = fpn
def build(self, feed_vars, mode='train'):
if mode == 'train':
required_fields = [
'gt_class', 'gt_bbox', 'gt_mask', 'is_crowd', 'im_info'
]
else:
required_fields = ['im_shape', 'im_info']
self._input_check(required_fields, feed_vars)
im = feed_vars['image']
im_info = feed_vars['im_info']
mixed_precision_enabled = mixed_precision_global_state() is not None
# cast inputs to FP16
if mixed_precision_enabled:
im = fluid.layers.cast(im, 'float16')
# backbone
body_feats = self.backbone(im)
# cast features back to FP32
if mixed_precision_enabled:
body_feats = OrderedDict((k, fluid.layers.cast(v, 'float32'))
for k, v in body_feats.items())
# FPN
spatial_scale = None
if self.fpn is not None:
body_feats, spatial_scale = self.fpn.get_output(body_feats)
# RPN proposals
rois = self.rpn_head.get_proposals(body_feats, im_info, mode=mode)
if mode == 'train':
rpn_loss = self.rpn_head.get_loss(im_info, feed_vars['gt_bbox'],
feed_vars['is_crowd'])
outs = self.bbox_assigner(
rpn_rois=rois,
gt_classes=feed_vars['gt_class'],
is_crowd=feed_vars['is_crowd'],
gt_boxes=feed_vars['gt_bbox'],
im_info=feed_vars['im_info'])
rois = outs[0]
labels_int32 = outs[1]
if self.fpn is None:
last_feat = body_feats[list(body_feats.keys())[-1]]
roi_feat = self.roi_extractor(last_feat, rois)
else:
roi_feat = self.roi_extractor(body_feats, rois, spatial_scale)
loss = self.bbox_head.get_loss(roi_feat, labels_int32, *outs[2:])
loss.update(rpn_loss)
mask_rois, roi_has_mask_int32, mask_int32 = self.mask_assigner(
rois=rois,
gt_classes=feed_vars['gt_class'],
is_crowd=feed_vars['is_crowd'],
gt_segms=feed_vars['gt_mask'],
im_info=feed_vars['im_info'],
labels_int32=labels_int32)
if self.fpn is None:
bbox_head_feat = self.bbox_head.get_head_feat()
feat = fluid.layers.gather(bbox_head_feat, roi_has_mask_int32)
else:
feat = self.roi_extractor(
body_feats, mask_rois, spatial_scale, is_mask=True)
mask_loss = self.mask_head.get_loss(feat, mask_int32)
loss.update(mask_loss)
total_loss = fluid.layers.sum(list(loss.values()))
loss.update({'loss': total_loss})
return loss
else:
if self.rpn_only:
im_scale = fluid.layers.slice(
im_info, [1], starts=[2], ends=[3])
im_scale = fluid.layers.sequence_expand(im_scale, rois)
rois = rois / im_scale
return {'proposal': rois}
mask_name = 'mask_pred'
mask_pred, bbox_pred = self.single_scale_eval(
body_feats, mask_name, rois, im_info, feed_vars['im_shape'],
spatial_scale)
return {'bbox': bbox_pred, 'mask': mask_pred}
def build_multi_scale(self, feed_vars, mask_branch=False):
required_fields = ['image', 'im_info']
self._input_check(required_fields, feed_vars)
result = {}
if not mask_branch:
assert 'im_shape' in feed_vars, \
"{} has no im_shape field".format(feed_vars)
result.update(feed_vars)
for i in range(len(self.im_info_names) // 2):
im = feed_vars[self.im_info_names[2 * i]]
im_info = feed_vars[self.im_info_names[2 * i + 1]]
body_feats = self.backbone(im)
# FPN
if self.fpn is not None:
body_feats, spatial_scale = self.fpn.get_output(body_feats)
rois = self.rpn_head.get_proposals(body_feats, im_info, mode='test')
if not mask_branch:
im_shape = feed_vars['im_shape']
body_feat_names = list(body_feats.keys())
if self.fpn is None:
body_feat = body_feats[body_feat_names[-1]]
roi_feat = self.roi_extractor(body_feat, rois)
else:
roi_feat = self.roi_extractor(body_feats, rois,
spatial_scale)
pred = self.bbox_head.get_prediction(
roi_feat, rois, im_info, im_shape, return_box_score=True)
bbox_name = 'bbox_' + str(i)
score_name = 'score_' + str(i)
if 'flip' in im.name:
bbox_name += '_flip'
score_name += '_flip'
result[bbox_name] = pred['bbox']
result[score_name] = pred['score']
else:
mask_name = 'mask_pred_' + str(i)
bbox_pred = feed_vars['bbox']
#result.update({im.name: im})
if 'flip' in im.name:
mask_name += '_flip'
bbox_pred = feed_vars['bbox_flip']
mask_pred, bbox_pred = self.single_scale_eval(
body_feats, mask_name, rois, im_info, feed_vars['im_shape'],
spatial_scale, bbox_pred)
result[mask_name] = mask_pred
return result
def single_scale_eval(self,
body_feats,
mask_name,
rois,
im_info,
im_shape,
spatial_scale,
bbox_pred=None):
if not bbox_pred:
if self.fpn is None:
last_feat = body_feats[list(body_feats.keys())[-1]]
roi_feat = self.roi_extractor(last_feat, rois)
else:
roi_feat = self.roi_extractor(body_feats, rois, spatial_scale)
bbox_pred = self.bbox_head.get_prediction(roi_feat, rois, im_info,
im_shape)
bbox_pred = bbox_pred['bbox']
# share weight
bbox_shape = fluid.layers.shape(bbox_pred)
bbox_size = fluid.layers.reduce_prod(bbox_shape)
bbox_size = fluid.layers.reshape(bbox_size, [1, 1])
size = fluid.layers.fill_constant([1, 1], value=6, dtype='int32')
cond = fluid.layers.less_than(x=bbox_size, y=size)
mask_pred = fluid.layers.create_global_var(
shape=[1],
value=0.0,
dtype='float32',
persistable=False,
name=mask_name)
def noop():
fluid.layers.assign(input=bbox_pred, output=mask_pred)
def process_boxes():
bbox = fluid.layers.slice(bbox_pred, [1], starts=[2], ends=[6])
im_scale = fluid.layers.slice(im_info, [1], starts=[2], ends=[3])
im_scale = fluid.layers.sequence_expand(im_scale, bbox)
mask_rois = bbox * im_scale
if self.fpn is None:
last_feat = body_feats[list(body_feats.keys())[-1]]
mask_feat = self.roi_extractor(last_feat, mask_rois)
mask_feat = self.bbox_head.get_head_feat(mask_feat)
else:
mask_feat = self.roi_extractor(
body_feats, mask_rois, spatial_scale, is_mask=True)
mask_out = self.mask_head.get_prediction(mask_feat, bbox)
fluid.layers.assign(input=mask_out, output=mask_pred)
fluid.layers.cond(cond, noop, process_boxes)
return mask_pred, bbox_pred
def _input_check(self, require_fields, feed_vars):
for var in require_fields:
assert var in feed_vars, \
"{} has no {} field".format(feed_vars, var)
def _inputs_def(self, image_shape):
im_shape = [None] + image_shape
# yapf: disable
inputs_def = {
'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0},
'im_info': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0},
'im_shape': {'shape': [None, 3], 'dtype': 'float32', 'lod_level': 0},
'gt_bbox': {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1},
'gt_class': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
'is_crowd': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
'gt_mask': {'shape': [None, 2], 'dtype': 'float32', 'lod_level': 3}, # polygon coordinates
'is_difficult': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1},
}
# yapf: enable
return inputs_def
def build_inputs(self,
image_shape=[3, None, None],
fields=[
'image', 'im_info', 'im_id', 'gt_bbox', 'gt_class',
'is_crowd', 'gt_mask'
],
multi_scale=False,
num_scales=-1,
use_flip=None,
use_dataloader=True,
iterable=False,
mask_branch=False):
inputs_def = self._inputs_def(image_shape)
fields = copy.deepcopy(fields)
if multi_scale:
ms_def, ms_fields = multiscale_def(image_shape, num_scales,
use_flip)
inputs_def.update(ms_def)
fields += ms_fields
self.im_info_names = ['image', 'im_info'] + ms_fields
if mask_branch:
box_fields = ['bbox', 'bbox_flip'] if use_flip else ['bbox']
for key in box_fields:
inputs_def[key] = {
'shape': [None, 6],
'dtype': 'float32',
'lod_level': 1
}
fields += box_fields
feed_vars = OrderedDict([(key, fluid.data(
name=key,
shape=inputs_def[key]['shape'],
dtype=inputs_def[key]['dtype'],
lod_level=inputs_def[key]['lod_level'])) for key in fields])
use_dataloader = use_dataloader and not mask_branch
loader = fluid.io.DataLoader.from_generator(
feed_list=list(feed_vars.values()),
capacity=16,
use_double_buffer=True,
iterable=iterable) if use_dataloader else None
return feed_vars, loader
def train(self, feed_vars):
return self.build(feed_vars, 'train')
def eval(self, feed_vars, multi_scale=None, mask_branch=False):
if multi_scale:
return self.build_multi_scale(feed_vars, mask_branch)
return self.build(feed_vars, 'test')
def test(self, feed_vars, exclude_nms=False):
assert not exclude_nms, "exclude_nms for {} is not support currently".format(
self.__class__.__name__)
return self.build(feed_vars, 'test')