PulseFocusPlatform/static/ppdet/utils/widerface_eval_utils.py

284 lines
9.8 KiB
Python

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
from ppdet.data.source.widerface import widerface_label
import logging
logger = logging.getLogger(__name__)
__all__ = [
'get_shrink', 'bbox_vote', 'save_widerface_bboxes', 'save_fddb_bboxes',
'to_chw_bgr', 'bbox2out', 'get_category_info', 'lmk2out'
]
def to_chw_bgr(image):
"""
Transpose image from HWC to CHW and from RBG to BGR.
Args:
image (np.array): an image with HWC and RBG layout.
"""
# HWC to CHW
if len(image.shape) == 3:
image = np.swapaxes(image, 1, 2)
image = np.swapaxes(image, 1, 0)
# RBG to BGR
image = image[[2, 1, 0], :, :]
return image
def bbox_vote(det):
order = det[:, 4].ravel().argsort()[::-1]
det = det[order, :]
if det.shape[0] == 0:
dets = np.array([[10, 10, 20, 20, 0.002]])
det = np.empty(shape=[0, 5])
while det.shape[0] > 0:
# IOU
area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1)
xx1 = np.maximum(det[0, 0], det[:, 0])
yy1 = np.maximum(det[0, 1], det[:, 1])
xx2 = np.minimum(det[0, 2], det[:, 2])
yy2 = np.minimum(det[0, 3], det[:, 3])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
o = inter / (area[0] + area[:] - inter)
# nms
merge_index = np.where(o >= 0.3)[0]
det_accu = det[merge_index, :]
det = np.delete(det, merge_index, 0)
if merge_index.shape[0] <= 1:
if det.shape[0] == 0:
try:
dets = np.row_stack((dets, det_accu))
except:
dets = det_accu
continue
det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4))
max_score = np.max(det_accu[:, 4])
det_accu_sum = np.zeros((1, 5))
det_accu_sum[:, 0:4] = np.sum(det_accu[:, 0:4],
axis=0) / np.sum(det_accu[:, -1:])
det_accu_sum[:, 4] = max_score
try:
dets = np.row_stack((dets, det_accu_sum))
except:
dets = det_accu_sum
dets = dets[0:750, :]
# Only keep 0.3 or more
keep_index = np.where(dets[:, 4] >= 0.01)[0]
dets = dets[keep_index, :]
return dets
def get_shrink(height, width):
"""
Args:
height (int): image height.
width (int): image width.
"""
# avoid out of memory
max_shrink_v1 = (0x7fffffff / 577.0 / (height * width))**0.5
max_shrink_v2 = ((678 * 1024 * 2.0 * 2.0) / (height * width))**0.5
def get_round(x, loc):
str_x = str(x)
if '.' in str_x:
str_before, str_after = str_x.split('.')
len_after = len(str_after)
if len_after >= 3:
str_final = str_before + '.' + str_after[0:loc]
return float(str_final)
else:
return x
max_shrink = get_round(min(max_shrink_v1, max_shrink_v2), 2) - 0.3
if max_shrink >= 1.5 and max_shrink < 2:
max_shrink = max_shrink - 0.1
elif max_shrink >= 2 and max_shrink < 3:
max_shrink = max_shrink - 0.2
elif max_shrink >= 3 and max_shrink < 4:
max_shrink = max_shrink - 0.3
elif max_shrink >= 4 and max_shrink < 5:
max_shrink = max_shrink - 0.4
elif max_shrink >= 5:
max_shrink = max_shrink - 0.5
elif max_shrink <= 0.1:
max_shrink = 0.1
shrink = max_shrink if max_shrink < 1 else 1
return shrink, max_shrink
def save_widerface_bboxes(image_path, bboxes_scores, output_dir):
image_name = image_path.split('/')[-1]
image_class = image_path.split('/')[-2]
odir = os.path.join(output_dir, image_class)
if not os.path.exists(odir):
os.makedirs(odir)
ofname = os.path.join(odir, '%s.txt' % (image_name[:-4]))
f = open(ofname, 'w')
f.write('{:s}\n'.format(image_class + '/' + image_name))
f.write('{:d}\n'.format(bboxes_scores.shape[0]))
for box_score in bboxes_scores:
xmin, ymin, xmax, ymax, score = box_score
f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.format(xmin, ymin, (
xmax - xmin + 1), (ymax - ymin + 1), score))
f.close()
logger.info("The predicted result is saved as {}".format(ofname))
def save_fddb_bboxes(bboxes_scores,
output_dir,
output_fname='pred_fddb_res.txt'):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
predict_file = os.path.join(output_dir, output_fname)
f = open(predict_file, 'w')
for image_path, dets in bboxes_scores.iteritems():
f.write('{:s}\n'.format(image_path))
f.write('{:d}\n'.format(dets.shape[0]))
for box_score in dets:
xmin, ymin, xmax, ymax, score = box_score
width, height = xmax - xmin, ymax - ymin
f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'
.format(xmin, ymin, width, height, score))
logger.info("The predicted result is saved as {}".format(predict_file))
return predict_file
def get_category_info(anno_file=None,
with_background=True,
use_default_label=False):
if use_default_label or anno_file is None \
or not os.path.exists(anno_file):
logger.info("Not found annotation file {}, load "
"wider-face categories.".format(anno_file))
return widerfaceall_category_info(with_background)
else:
logger.info("Load categories from {}".format(anno_file))
return get_category_info_from_anno(anno_file, with_background)
def get_category_info_from_anno(anno_file, with_background=True):
"""
Get class id to category id map and category id
to category name map from annotation file.
Args:
anno_file (str): annotation file path
with_background (bool, default True):
whether load background as class 0.
"""
cats = []
with open(anno_file) as f:
for line in f.readlines():
cats.append(line.strip())
if cats[0] != 'background' and with_background:
cats.insert(0, 'background')
if cats[0] == 'background' and not with_background:
cats = cats[1:]
clsid2catid = {i: i for i in range(len(cats))}
catid2name = {i: name for i, name in enumerate(cats)}
return clsid2catid, catid2name
def widerfaceall_category_info(with_background=True):
"""
Get class id to category id map and category id
to category name map of mixup wider_face dataset
Args:
with_background (bool, default True):
whether load background as class 0.
"""
label_map = widerface_label(with_background)
label_map = sorted(label_map.items(), key=lambda x: x[1])
cats = [l[0] for l in label_map]
if with_background:
cats.insert(0, 'background')
clsid2catid = {i: i for i in range(len(cats))}
catid2name = {i: name for i, name in enumerate(cats)}
return clsid2catid, catid2name
def lmk2out(results, is_bbox_normalized=False):
"""
Args:
results: request a dict, should include: `landmark`, `im_id`,
if is_bbox_normalized=True, also need `im_shape`.
is_bbox_normalized: whether or not landmark is normalized.
"""
xywh_res = []
for t in results:
bboxes = t['bbox'][0]
lengths = t['bbox'][1][0]
im_ids = np.array(t['im_id'][0]).flatten()
if bboxes.shape == (1, 1) or bboxes is None:
continue
face_index = t['face_index'][0]
prior_box = t['prior_boxes'][0]
predict_lmk = t['landmark'][0]
prior = np.reshape(prior_box, (-1, 4))
predictlmk = np.reshape(predict_lmk, (-1, 10))
k = 0
for a in range(len(lengths)):
num = lengths[a]
im_id = int(im_ids[a])
for i in range(num):
score = bboxes[k][1]
theindex = face_index[i][0]
me_prior = prior[theindex, :]
lmk_pred = predictlmk[theindex, :]
prior_w = me_prior[2] - me_prior[0]
prior_h = me_prior[3] - me_prior[1]
prior_w_center = (me_prior[2] + me_prior[0]) / 2
prior_h_center = (me_prior[3] + me_prior[1]) / 2
lmk_decode = np.zeros((10))
for j in [0, 2, 4, 6, 8]:
lmk_decode[j] = lmk_pred[j] * 0.1 * prior_w + prior_w_center
for j in [1, 3, 5, 7, 9]:
lmk_decode[j] = lmk_pred[j] * 0.1 * prior_h + prior_h_center
im_shape = t['im_shape'][0][a].tolist()
image_h, image_w = int(im_shape[0]), int(im_shape[1])
if is_bbox_normalized:
lmk_decode = lmk_decode * np.array([
image_w, image_h, image_w, image_h, image_w, image_h,
image_w, image_h, image_w, image_h
])
lmk_res = {
'image_id': im_id,
'landmark': lmk_decode,
'score': score,
}
xywh_res.append(lmk_res)
k += 1
return xywh_res