PulseFocusPlatform/static/ppdet/modeling/roi_heads/mask_head.py

161 lines
5.8 KiB
Python

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import MSRA
from paddle.fluid.regularizer import L2Decay
from ppdet.core.workspace import register
from ppdet.modeling.ops import ConvNorm
__all__ = ['MaskHead']
@register
class MaskHead(object):
"""
RCNN mask head
Args:
num_convs (int): num of convolutions, 4 for FPN, 1 otherwise
conv_dim (int): num of channels after first convolution
resolution (int): size of the output mask
dilation (int): dilation rate
num_classes (int): number of output classes
"""
__shared__ = ['num_classes']
def __init__(self,
num_convs=0,
conv_dim=256,
resolution=14,
dilation=1,
num_classes=81,
norm_type=None):
super(MaskHead, self).__init__()
self.num_convs = num_convs
self.conv_dim = conv_dim
self.resolution = resolution
self.dilation = dilation
self.num_classes = num_classes
self.norm_type = norm_type
def _mask_conv_head(self, roi_feat, num_convs, norm_type):
if norm_type == 'gn':
for i in range(num_convs):
layer_name = "mask_inter_feat_" + str(i + 1)
fan = self.conv_dim * 3 * 3
initializer = MSRA(uniform=False, fan_in=fan)
roi_feat = ConvNorm(
roi_feat,
self.conv_dim,
3,
act='relu',
dilation=self.dilation,
initializer=initializer,
norm_type=self.norm_type,
name=layer_name,
norm_name=layer_name)
else:
for i in range(num_convs):
layer_name = "mask_inter_feat_" + str(i + 1)
fan = self.conv_dim * 3 * 3
initializer = MSRA(uniform=False, fan_in=fan)
roi_feat = fluid.layers.conv2d(
input=roi_feat,
num_filters=self.conv_dim,
filter_size=3,
padding=1 * self.dilation,
act='relu',
stride=1,
dilation=self.dilation,
name=layer_name,
param_attr=ParamAttr(
name=layer_name + '_w', initializer=initializer),
bias_attr=ParamAttr(
name=layer_name + '_b',
learning_rate=2.,
regularizer=L2Decay(0.)))
fan = roi_feat.shape[1] * 2 * 2
feat = fluid.layers.conv2d_transpose(
input=roi_feat,
num_filters=self.conv_dim,
filter_size=2,
stride=2,
act='relu',
param_attr=ParamAttr(
name='conv5_mask_w',
initializer=MSRA(
uniform=False, fan_in=fan)),
bias_attr=ParamAttr(
name='conv5_mask_b', learning_rate=2., regularizer=L2Decay(0.)))
return feat
def _get_output(self, roi_feat):
class_num = self.num_classes
# configure the conv number for FPN if necessary
head_feat = self._mask_conv_head(roi_feat, self.num_convs,
self.norm_type)
fan = class_num
mask_logits = fluid.layers.conv2d(
input=head_feat,
num_filters=class_num,
filter_size=1,
act=None,
param_attr=ParamAttr(
name='mask_fcn_logits_w',
initializer=MSRA(
uniform=False, fan_in=fan)),
bias_attr=ParamAttr(
name="mask_fcn_logits_b",
learning_rate=2.,
regularizer=L2Decay(0.)))
return mask_logits
def get_loss(self, roi_feat, mask_int32):
mask_logits = self._get_output(roi_feat)
num_classes = self.num_classes
resolution = self.resolution
dim = num_classes * resolution * resolution
mask_logits = fluid.layers.reshape(mask_logits, (-1, dim))
mask_label = fluid.layers.cast(x=mask_int32, dtype='float32')
mask_label.stop_gradient = True
loss_mask = fluid.layers.sigmoid_cross_entropy_with_logits(
x=mask_logits, label=mask_label, ignore_index=-1, normalize=True)
loss_mask = fluid.layers.reduce_sum(loss_mask, name='loss_mask')
return {'loss_mask': loss_mask}
def get_prediction(self, roi_feat, bbox_pred):
"""
Get prediction mask in test stage.
Args:
roi_feat (Variable): RoI feature from RoIExtractor.
bbox_pred (Variable): predicted bbox.
Returns:
mask_pred (Variable): Prediction mask with shape
[N, num_classes, resolution, resolution].
"""
mask_logits = self._get_output(roi_feat)
mask_prob = fluid.layers.sigmoid(mask_logits)
mask_prob = fluid.layers.lod_reset(mask_prob, bbox_pred)
return mask_prob