PulseFocusPlatform/ppdet/data/transform/operators.py

2274 lines
84 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# function:
# operators to process sample,
# eg: decode/resize/crop image
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
try:
from collections.abc import Sequence
except Exception:
from collections import Sequence
from numbers import Number, Integral
import uuid
import random
import math
import numpy as np
import os
import copy
import cv2
from PIL import Image, ImageDraw
from ppdet.core.workspace import serializable
from ppdet.modeling import bbox_utils
from .op_helper import (satisfy_sample_constraint, filter_and_process,
generate_sample_bbox, clip_bbox, data_anchor_sampling,
satisfy_sample_constraint_coverage, crop_image_sampling,
generate_sample_bbox_square, bbox_area_sampling,
is_poly, transform_bbox)
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
registered_ops = []
def register_op(cls):
registered_ops.append(cls.__name__)
if not hasattr(BaseOperator, cls.__name__):
setattr(BaseOperator, cls.__name__, cls)
else:
raise KeyError("The {} class has been registered.".format(cls.__name__))
return serializable(cls)
class BboxError(ValueError):
pass
class ImageError(ValueError):
pass
class BaseOperator(object):
def __init__(self, name=None):
if name is None:
name = self.__class__.__name__
self._id = name + '_' + str(uuid.uuid4())[-6:]
def apply(self, sample, context=None):
""" Process a sample.
Args:
sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
context (dict): info about this sample processing
Returns:
result (dict): a processed sample
"""
return sample
def __call__(self, sample, context=None):
""" Process a sample.
Args:
sample (dict): a dict of sample, eg: {'image':xx, 'label': xxx}
context (dict): info about this sample processing
Returns:
result (dict): a processed sample
"""
if isinstance(sample, Sequence):
for i in range(len(sample)):
sample[i] = self.apply(sample[i], context)
else:
sample = self.apply(sample, context)
return sample
def __str__(self):
return str(self._id)
@register_op
class Decode(BaseOperator):
def __init__(self):
""" Transform the image data to numpy format following the rgb format
"""
super(Decode, self).__init__()
def apply(self, sample, context=None):
""" load image if 'im_file' field is not empty but 'image' is"""
if 'image' not in sample:
with open(sample['im_file'], 'rb') as f:
sample['image'] = f.read()
sample.pop('im_file')
im = sample['image']
data = np.frombuffer(im, dtype='uint8')
im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode
if 'keep_ori_im' in sample and sample['keep_ori_im']:
sample['ori_image'] = im
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
sample['image'] = im
if 'h' not in sample:
sample['h'] = im.shape[0]
elif sample['h'] != im.shape[0]:
logger.warning(
"The actual image height: {} is not equal to the "
"height: {} in annotation, and update sample['h'] by actual "
"image height.".format(im.shape[0], sample['h']))
sample['h'] = im.shape[0]
if 'w' not in sample:
sample['w'] = im.shape[1]
elif sample['w'] != im.shape[1]:
logger.warning(
"The actual image width: {} is not equal to the "
"width: {} in annotation, and update sample['w'] by actual "
"image width.".format(im.shape[1], sample['w']))
sample['w'] = im.shape[1]
sample['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
sample['scale_factor'] = np.array([1., 1.], dtype=np.float32)
return sample
@register_op
class Permute(BaseOperator):
def __init__(self):
"""
Change the channel to be (C, H, W)
"""
super(Permute, self).__init__()
def apply(self, sample, context=None):
im = sample['image']
im = im.transpose((2, 0, 1))
sample['image'] = im
return sample
@register_op
class Lighting(BaseOperator):
"""
Lighting the image by eigenvalues and eigenvectors
Args:
eigval (list): eigenvalues
eigvec (list): eigenvectors
alphastd (float): random weight of lighting, 0.1 by default
"""
def __init__(self, eigval, eigvec, alphastd=0.1):
super(Lighting, self).__init__()
self.alphastd = alphastd
self.eigval = np.array(eigval).astype('float32')
self.eigvec = np.array(eigvec).astype('float32')
def apply(self, sample, context=None):
alpha = np.random.normal(scale=self.alphastd, size=(3, ))
sample['image'] += np.dot(self.eigvec, self.eigval * alpha)
return sample
@register_op
class RandomErasingImage(BaseOperator):
def __init__(self, prob=0.5, lower=0.02, higher=0.4, aspect_ratio=0.3):
"""
Random Erasing Data Augmentation, see https://arxiv.org/abs/1708.04896
Args:
prob (float): probability to carry out random erasing
lower (float): lower limit of the erasing area ratio
heigher (float): upper limit of the erasing area ratio
aspect_ratio (float): aspect ratio of the erasing region
"""
super(RandomErasingImage, self).__init__()
self.prob = prob
self.lower = lower
self.heigher = heigher
self.aspect_ratio = aspect_ratio
def apply(self, sample):
gt_bbox = sample['gt_bbox']
im = sample['image']
if not isinstance(im, np.ndarray):
raise TypeError("{}: image is not a numpy array.".format(self))
if len(im.shape) != 3:
raise ImageError("{}: image is not 3-dimensional.".format(self))
for idx in range(gt_bbox.shape[0]):
if self.prob <= np.random.rand():
continue
x1, y1, x2, y2 = gt_bbox[idx, :]
w_bbox = x2 - x1
h_bbox = y2 - y1
area = w_bbox * h_bbox
target_area = random.uniform(self.lower, self.higher) * area
aspect_ratio = random.uniform(self.aspect_ratio,
1 / self.aspect_ratio)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < w_bbox and h < h_bbox:
off_y1 = random.randint(0, int(h_bbox - h))
off_x1 = random.randint(0, int(w_bbox - w))
im[int(y1 + off_y1):int(y1 + off_y1 + h), int(x1 + off_x1):int(
x1 + off_x1 + w), :] = 0
sample['image'] = im
return sample
@register_op
class NormalizeImage(BaseOperator):
def __init__(self, mean=[0.485, 0.456, 0.406], std=[1, 1, 1],
is_scale=True):
"""
Args:
mean (list): the pixel mean
std (list): the pixel variance
"""
super(NormalizeImage, self).__init__()
self.mean = mean
self.std = std
self.is_scale = is_scale
if not (isinstance(self.mean, list) and isinstance(self.std, list) and
isinstance(self.is_scale, bool)):
raise TypeError("{}: input type is invalid.".format(self))
from functools import reduce
if reduce(lambda x, y: x * y, self.std) == 0:
raise ValueError('{}: std is invalid!'.format(self))
def apply(self, sample, context=None):
"""Normalize the image.
Operators:
1.(optional) Scale the image to [0,1]
2. Each pixel minus mean and is divided by std
"""
im = sample['image']
im = im.astype(np.float32, copy=False)
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
std = np.array(self.std)[np.newaxis, np.newaxis, :]
if self.is_scale:
im = im / 255.0
im -= mean
im /= std
sample['image'] = im
return sample
@register_op
class GridMask(BaseOperator):
def __init__(self,
use_h=True,
use_w=True,
rotate=1,
offset=False,
ratio=0.5,
mode=1,
prob=0.7,
upper_iter=360000):
"""
GridMask Data Augmentation, see https://arxiv.org/abs/2001.04086
Args:
use_h (bool): whether to mask vertically
use_w (boo;): whether to mask horizontally
rotate (float): angle for the mask to rotate
offset (float): mask offset
ratio (float): mask ratio
mode (int): gridmask mode
prob (float): max probability to carry out gridmask
upper_iter (int): suggested to be equal to global max_iter
"""
super(GridMask, self).__init__()
self.use_h = use_h
self.use_w = use_w
self.rotate = rotate
self.offset = offset
self.ratio = ratio
self.mode = mode
self.prob = prob
self.upper_iter = upper_iter
from .gridmask_utils import Gridmask
self.gridmask_op = Gridmask(
use_h,
use_w,
rotate=rotate,
offset=offset,
ratio=ratio,
mode=mode,
prob=prob,
upper_iter=upper_iter)
def apply(self, sample, context=None):
sample['image'] = self.gridmask_op(sample['image'], sample['curr_iter'])
return sample
@register_op
class RandomDistort(BaseOperator):
"""Random color distortion.
Args:
hue (list): hue settings. in [lower, upper, probability] format.
saturation (list): saturation settings. in [lower, upper, probability] format.
contrast (list): contrast settings. in [lower, upper, probability] format.
brightness (list): brightness settings. in [lower, upper, probability] format.
random_apply (bool): whether to apply in random (yolo) or fixed (SSD)
order.
count (int): the number of doing distrot
random_channel (bool): whether to swap channels randomly
"""
def __init__(self,
hue=[-18, 18, 0.5],
saturation=[0.5, 1.5, 0.5],
contrast=[0.5, 1.5, 0.5],
brightness=[0.5, 1.5, 0.5],
random_apply=True,
count=4,
random_channel=False):
super(RandomDistort, self).__init__()
self.hue = hue
self.saturation = saturation
self.contrast = contrast
self.brightness = brightness
self.random_apply = random_apply
self.count = count
self.random_channel = random_channel
def apply_hue(self, img):
low, high, prob = self.hue
if np.random.uniform(0., 1.) < prob:
return img
img = img.astype(np.float32)
# it works, but result differ from HSV version
delta = np.random.uniform(low, high)
u = np.cos(delta * np.pi)
w = np.sin(delta * np.pi)
bt = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
tyiq = np.array([[0.299, 0.587, 0.114], [0.596, -0.274, -0.321],
[0.211, -0.523, 0.311]])
ityiq = np.array([[1.0, 0.956, 0.621], [1.0, -0.272, -0.647],
[1.0, -1.107, 1.705]])
t = np.dot(np.dot(ityiq, bt), tyiq).T
img = np.dot(img, t)
return img
def apply_saturation(self, img):
low, high, prob = self.saturation
if np.random.uniform(0., 1.) < prob:
return img
delta = np.random.uniform(low, high)
img = img.astype(np.float32)
# it works, but result differ from HSV version
gray = img * np.array([[[0.299, 0.587, 0.114]]], dtype=np.float32)
gray = gray.sum(axis=2, keepdims=True)
gray *= (1.0 - delta)
img *= delta
img += gray
return img
def apply_contrast(self, img):
low, high, prob = self.contrast
if np.random.uniform(0., 1.) < prob:
return img
delta = np.random.uniform(low, high)
img = img.astype(np.float32)
img *= delta
return img
def apply_brightness(self, img):
low, high, prob = self.brightness
if np.random.uniform(0., 1.) < prob:
return img
delta = np.random.uniform(low, high)
img = img.astype(np.float32)
img += delta
return img
def apply(self, sample, context=None):
img = sample['image']
if self.random_apply:
functions = [
self.apply_brightness, self.apply_contrast,
self.apply_saturation, self.apply_hue
]
distortions = np.random.permutation(functions)[:self.count]
for func in distortions:
img = func(img)
sample['image'] = img
return sample
img = self.apply_brightness(img)
mode = np.random.randint(0, 2)
if mode:
img = self.apply_contrast(img)
img = self.apply_saturation(img)
img = self.apply_hue(img)
if not mode:
img = self.apply_contrast(img)
if self.random_channel:
if np.random.randint(0, 2):
img = img[..., np.random.permutation(3)]
sample['image'] = img
return sample
@register_op
class AutoAugment(BaseOperator):
def __init__(self, autoaug_type="v1"):
"""
Args:
autoaug_type (str): autoaug type, support v0, v1, v2, v3, test
"""
super(AutoAugment, self).__init__()
self.autoaug_type = autoaug_type
def apply(self, sample, context=None):
"""
Learning Data Augmentation Strategies for Object Detection, see https://arxiv.org/abs/1906.11172
"""
im = sample['image']
gt_bbox = sample['gt_bbox']
if not isinstance(im, np.ndarray):
raise TypeError("{}: image is not a numpy array.".format(self))
if len(im.shape) != 3:
raise ImageError("{}: image is not 3-dimensional.".format(self))
if len(gt_bbox) == 0:
return sample
height, width, _ = im.shape
norm_gt_bbox = np.ones_like(gt_bbox, dtype=np.float32)
norm_gt_bbox[:, 0] = gt_bbox[:, 1] / float(height)
norm_gt_bbox[:, 1] = gt_bbox[:, 0] / float(width)
norm_gt_bbox[:, 2] = gt_bbox[:, 3] / float(height)
norm_gt_bbox[:, 3] = gt_bbox[:, 2] / float(width)
from .autoaugment_utils import distort_image_with_autoaugment
im, norm_gt_bbox = distort_image_with_autoaugment(im, norm_gt_bbox,
self.autoaug_type)
gt_bbox[:, 0] = norm_gt_bbox[:, 1] * float(width)
gt_bbox[:, 1] = norm_gt_bbox[:, 0] * float(height)
gt_bbox[:, 2] = norm_gt_bbox[:, 3] * float(width)
gt_bbox[:, 3] = norm_gt_bbox[:, 2] * float(height)
sample['image'] = im
sample['gt_bbox'] = gt_bbox
return sample
@register_op
class RandomFlip(BaseOperator):
def __init__(self, prob=0.5):
"""
Args:
prob (float): the probability of flipping image
"""
super(RandomFlip, self).__init__()
self.prob = prob
if not (isinstance(self.prob, float)):
raise TypeError("{}: input type is invalid.".format(self))
def apply_segm(self, segms, height, width):
def _flip_poly(poly, width):
flipped_poly = np.array(poly)
flipped_poly[0::2] = width - np.array(poly[0::2])
return flipped_poly.tolist()
def _flip_rle(rle, height, width):
if 'counts' in rle and type(rle['counts']) == list:
rle = mask_util.frPyObjects(rle, height, width)
mask = mask_util.decode(rle)
mask = mask[:, ::-1]
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
return rle
flipped_segms = []
for segm in segms:
if is_poly(segm):
# Polygon format
flipped_segms.append([_flip_poly(poly, width) for poly in segm])
else:
# RLE format
import pycocotools.mask as mask_util
flipped_segms.append(_flip_rle(segm, height, width))
return flipped_segms
def apply_keypoint(self, gt_keypoint, width):
for i in range(gt_keypoint.shape[1]):
if i % 2 == 0:
old_x = gt_keypoint[:, i].copy()
gt_keypoint[:, i] = width - old_x
return gt_keypoint
def apply_image(self, image):
return image[:, ::-1, :]
def apply_bbox(self, bbox, width):
oldx1 = bbox[:, 0].copy()
oldx2 = bbox[:, 2].copy()
bbox[:, 0] = width - oldx2
bbox[:, 2] = width - oldx1
return bbox
def apply_rbox(self, bbox, width):
oldx1 = bbox[:, 0].copy()
oldx2 = bbox[:, 2].copy()
oldx3 = bbox[:, 4].copy()
oldx4 = bbox[:, 6].copy()
bbox[:, 0] = width - oldx1
bbox[:, 2] = width - oldx2
bbox[:, 4] = width - oldx3
bbox[:, 6] = width - oldx4
bbox = [bbox_utils.get_best_begin_point_single(e) for e in bbox]
return bbox
def apply(self, sample, context=None):
"""Filp the image and bounding box.
Operators:
1. Flip the image numpy.
2. Transform the bboxes' x coordinates.
(Must judge whether the coordinates are normalized!)
3. Transform the segmentations' x coordinates.
(Must judge whether the coordinates are normalized!)
Output:
sample: the image, bounding box and segmentation part
in sample are flipped.
"""
if np.random.uniform(0, 1) < self.prob:
im = sample['image']
height, width = im.shape[:2]
im = self.apply_image(im)
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], width)
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], height,
width)
if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0:
sample['gt_keypoint'] = self.apply_keypoint(
sample['gt_keypoint'], width)
if 'semantic' in sample and sample['semantic']:
sample['semantic'] = sample['semantic'][:, ::-1]
if 'gt_segm' in sample and sample['gt_segm'].any():
sample['gt_segm'] = sample['gt_segm'][:, :, ::-1]
if 'gt_rbox2poly' in sample and sample['gt_rbox2poly'].any():
sample['gt_rbox2poly'] = self.apply_rbox(sample['gt_rbox2poly'],
width)
sample['flipped'] = True
sample['image'] = im
return sample
@register_op
class Resize(BaseOperator):
def __init__(self, target_size, keep_ratio, interp=cv2.INTER_LINEAR):
"""
Resize image to target size. if keep_ratio is True,
resize the image's long side to the maximum of target_size
if keep_ratio is False, resize the image to target size(h, w)
Args:
target_size (int|list): image target size
keep_ratio (bool): whether keep_ratio or not, default true
interp (int): the interpolation method
"""
super(Resize, self).__init__()
self.keep_ratio = keep_ratio
self.interp = interp
if not isinstance(target_size, (Integral, Sequence)):
raise TypeError(
"Type of target_size is invalid. Must be Integer or List or Tuple, now is {}".
format(type(target_size)))
if isinstance(target_size, Integral):
target_size = [target_size, target_size]
self.target_size = target_size
def apply_image(self, image, scale):
im_scale_x, im_scale_y = scale
return cv2.resize(
image,
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=self.interp)
def apply_bbox(self, bbox, scale, size):
im_scale_x, im_scale_y = scale
resize_w, resize_h = size
bbox[:, 0::2] *= im_scale_x
bbox[:, 1::2] *= im_scale_y
bbox[:, 0::2] = np.clip(bbox[:, 0::2], 0, resize_w)
bbox[:, 1::2] = np.clip(bbox[:, 1::2], 0, resize_h)
return bbox
def apply_segm(self, segms, im_size, scale):
def _resize_poly(poly, im_scale_x, im_scale_y):
resized_poly = np.array(poly).astype('float32')
resized_poly[0::2] *= im_scale_x
resized_poly[1::2] *= im_scale_y
return resized_poly.tolist()
def _resize_rle(rle, im_h, im_w, im_scale_x, im_scale_y):
if 'counts' in rle and type(rle['counts']) == list:
rle = mask_util.frPyObjects(rle, im_h, im_w)
mask = mask_util.decode(rle)
mask = cv2.resize(
image,
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=self.interp)
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
return rle
im_h, im_w = im_size
im_scale_x, im_scale_y = scale
resized_segms = []
for segm in segms:
if is_poly(segm):
# Polygon format
resized_segms.append([
_resize_poly(poly, im_scale_x, im_scale_y) for poly in segm
])
else:
# RLE format
import pycocotools.mask as mask_util
resized_segms.append(
_resize_rle(segm, im_h, im_w, im_scale_x, im_scale_y))
return resized_segms
def apply(self, sample, context=None):
""" Resize the image numpy.
"""
im = sample['image']
if not isinstance(im, np.ndarray):
raise TypeError("{}: image type is not numpy.".format(self))
if len(im.shape) != 3:
raise ImageError('{}: image is not 3-dimensional.'.format(self))
# apply image
im_shape = im.shape
if self.keep_ratio:
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
target_size_min = np.min(self.target_size)
target_size_max = np.max(self.target_size)
im_scale = min(target_size_min / im_size_min,
target_size_max / im_size_max)
resize_h = im_scale * float(im_shape[0])
resize_w = im_scale * float(im_shape[1])
im_scale_x = im_scale
im_scale_y = im_scale
else:
resize_h, resize_w = self.target_size
im_scale_y = resize_h / im_shape[0]
im_scale_x = resize_w / im_shape[1]
im = self.apply_image(sample['image'], [im_scale_x, im_scale_y])
sample['image'] = im
sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
if 'scale_factor' in sample:
scale_factor = sample['scale_factor']
sample['scale_factor'] = np.asarray(
[scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
dtype=np.float32)
else:
sample['scale_factor'] = np.asarray(
[im_scale_y, im_scale_x], dtype=np.float32)
# apply bbox
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'],
[im_scale_x, im_scale_y],
[resize_w, resize_h])
# apply rbox
if 'gt_rbox2poly' in sample:
if np.array(sample['gt_rbox2poly']).shape[1] != 8:
logger.warning(
"gt_rbox2poly's length shoule be 8, but actually is {}".
format(len(sample['gt_rbox2poly'])))
sample['gt_rbox2poly'] = self.apply_bbox(sample['gt_rbox2poly'],
[im_scale_x, im_scale_y],
[resize_w, resize_h])
# apply polygon
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_shape[:2],
[im_scale_x, im_scale_y])
# apply semantic
if 'semantic' in sample and sample['semantic']:
semantic = sample['semantic']
semantic = cv2.resize(
semantic.astype('float32'),
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=self.interp)
semantic = np.asarray(semantic).astype('int32')
semantic = np.expand_dims(semantic, 0)
sample['semantic'] = semantic
# apply gt_segm
if 'gt_segm' in sample and len(sample['gt_segm']) > 0:
masks = [
cv2.resize(
gt_segm,
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=cv2.INTER_NEAREST)
for gt_segm in sample['gt_segm']
]
sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
return sample
@register_op
class MultiscaleTestResize(BaseOperator):
def __init__(self,
origin_target_size=[800, 1333],
target_size=[],
interp=cv2.INTER_LINEAR,
use_flip=True):
"""
Rescale image to the each size in target size, and capped at max_size.
Args:
origin_target_size (list): origin target size of image
target_size (list): A list of target sizes of image.
interp (int): the interpolation method.
use_flip (bool): whether use flip augmentation.
"""
super(MultiscaleTestResize, self).__init__()
self.interp = interp
self.use_flip = use_flip
if not isinstance(target_size, Sequence):
raise TypeError(
"Type of target_size is invalid. Must be List or Tuple, now is {}".
format(type(target_size)))
self.target_size = target_size
if not isinstance(origin_target_size, Sequence):
raise TypeError(
"Type of origin_target_size is invalid. Must be List or Tuple, now is {}".
format(type(origin_target_size)))
self.origin_target_size = origin_target_size
def apply(self, sample, context=None):
""" Resize the image numpy for multi-scale test.
"""
samples = []
resizer = Resize(
self.origin_target_size, keep_ratio=True, interp=self.interp)
samples.append(resizer(sample.copy(), context))
if self.use_flip:
flipper = RandomFlip(1.1)
samples.append(flipper(sample.copy(), context=context))
for size in self.target_size:
resizer = Resize(size, keep_ratio=True, interp=self.interp)
samples.append(resizer(sample.copy(), context))
return samples
@register_op
class RandomResize(BaseOperator):
def __init__(self,
target_size,
keep_ratio=True,
interp=cv2.INTER_LINEAR,
random_size=True,
random_interp=False):
"""
Resize image to target size randomly. random target_size and interpolation method
Args:
target_size (int, list, tuple): image target size, if random size is True, must be list or tuple
keep_ratio (bool): whether keep_raio or not, default true
interp (int): the interpolation method
random_size (bool): whether random select target size of image
random_interp (bool): whether random select interpolation method
"""
super(RandomResize, self).__init__()
self.keep_ratio = keep_ratio
self.interp = interp
self.interps = [
cv2.INTER_NEAREST,
cv2.INTER_LINEAR,
cv2.INTER_AREA,
cv2.INTER_CUBIC,
cv2.INTER_LANCZOS4,
]
assert isinstance(target_size, (
Integral, Sequence)), "target_size must be Integer, List or Tuple"
if random_size and not isinstance(target_size, Sequence):
raise TypeError(
"Type of target_size is invalid when random_size is True. Must be List or Tuple, now is {}".
format(type(target_size)))
self.target_size = target_size
self.random_size = random_size
self.random_interp = random_interp
def apply(self, sample, context=None):
""" Resize the image numpy.
"""
if self.random_size:
target_size = random.choice(self.target_size)
else:
target_size = self.target_size
if self.random_interp:
interp = random.choice(self.interps)
else:
interp = self.interp
resizer = Resize(target_size, self.keep_ratio, interp)
return resizer(sample, context=context)
@register_op
class RandomExpand(BaseOperator):
"""Random expand the canvas.
Args:
ratio (float): maximum expansion ratio.
prob (float): probability to expand.
fill_value (list): color value used to fill the canvas. in RGB order.
"""
def __init__(self, ratio=4., prob=0.5, fill_value=(127.5, 127.5, 127.5)):
super(RandomExpand, self).__init__()
assert ratio > 1.01, "expand ratio must be larger than 1.01"
self.ratio = ratio
self.prob = prob
assert isinstance(fill_value, (Number, Sequence)), \
"fill value must be either float or sequence"
if isinstance(fill_value, Number):
fill_value = (fill_value, ) * 3
if not isinstance(fill_value, tuple):
fill_value = tuple(fill_value)
self.fill_value = fill_value
def apply(self, sample, context=None):
if np.random.uniform(0., 1.) < self.prob:
return sample
im = sample['image']
height, width = im.shape[:2]
ratio = np.random.uniform(1., self.ratio)
h = int(height * ratio)
w = int(width * ratio)
if not h > height or not w > width:
return sample
y = np.random.randint(0, h - height)
x = np.random.randint(0, w - width)
offsets, size = [x, y], [h, w]
pad = Pad(size,
pad_mode=-1,
offsets=offsets,
fill_value=self.fill_value)
return pad(sample, context=context)
@register_op
class CropWithSampling(BaseOperator):
def __init__(self, batch_sampler, satisfy_all=False, avoid_no_bbox=True):
"""
Args:
batch_sampler (list): Multiple sets of different
parameters for cropping.
satisfy_all (bool): whether all boxes must satisfy.
e.g.[[1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0],
[1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 1.0],
[1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 1.0],
[1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 1.0],
[1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 1.0],
[1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 1.0],
[1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0]]
[max sample, max trial, min scale, max scale,
min aspect ratio, max aspect ratio,
min overlap, max overlap]
avoid_no_bbox (bool): whether to to avoid the
situation where the box does not appear.
"""
super(CropWithSampling, self).__init__()
self.batch_sampler = batch_sampler
self.satisfy_all = satisfy_all
self.avoid_no_bbox = avoid_no_bbox
def apply(self, sample, context):
"""
Crop the image and modify bounding box.
Operators:
1. Scale the image width and height.
2. Crop the image according to a radom sample.
3. Rescale the bounding box.
4. Determine if the new bbox is satisfied in the new image.
Returns:
sample: the image, bounding box are replaced.
"""
assert 'image' in sample, "image data not found"
im = sample['image']
gt_bbox = sample['gt_bbox']
gt_class = sample['gt_class']
im_height, im_width = im.shape[:2]
gt_score = None
if 'gt_score' in sample:
gt_score = sample['gt_score']
sampled_bbox = []
gt_bbox = gt_bbox.tolist()
for sampler in self.batch_sampler:
found = 0
for i in range(sampler[1]):
if found >= sampler[0]:
break
sample_bbox = generate_sample_bbox(sampler)
if satisfy_sample_constraint(sampler, sample_bbox, gt_bbox,
self.satisfy_all):
sampled_bbox.append(sample_bbox)
found = found + 1
im = np.array(im)
while sampled_bbox:
idx = int(np.random.uniform(0, len(sampled_bbox)))
sample_bbox = sampled_bbox.pop(idx)
sample_bbox = clip_bbox(sample_bbox)
crop_bbox, crop_class, crop_score = \
filter_and_process(sample_bbox, gt_bbox, gt_class, scores=gt_score)
if self.avoid_no_bbox:
if len(crop_bbox) < 1:
continue
xmin = int(sample_bbox[0] * im_width)
xmax = int(sample_bbox[2] * im_width)
ymin = int(sample_bbox[1] * im_height)
ymax = int(sample_bbox[3] * im_height)
im = im[ymin:ymax, xmin:xmax]
sample['image'] = im
sample['gt_bbox'] = crop_bbox
sample['gt_class'] = crop_class
sample['gt_score'] = crop_score
return sample
return sample
@register_op
class CropWithDataAchorSampling(BaseOperator):
def __init__(self,
batch_sampler,
anchor_sampler=None,
target_size=None,
das_anchor_scales=[16, 32, 64, 128],
sampling_prob=0.5,
min_size=8.,
avoid_no_bbox=True):
"""
Args:
anchor_sampler (list): anchor_sampling sets of different
parameters for cropping.
batch_sampler (list): Multiple sets of different
parameters for cropping.
e.g.[[1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.0]]
[[1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
[1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
[1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
[1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0],
[1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]]
[max sample, max trial, min scale, max scale,
min aspect ratio, max aspect ratio,
min overlap, max overlap, min coverage, max coverage]
target_size (int): target image size.
das_anchor_scales (list[float]): a list of anchor scales in data
anchor smapling.
min_size (float): minimum size of sampled bbox.
avoid_no_bbox (bool): whether to to avoid the
situation where the box does not appear.
"""
super(CropWithDataAchorSampling, self).__init__()
self.anchor_sampler = anchor_sampler
self.batch_sampler = batch_sampler
self.target_size = target_size
self.sampling_prob = sampling_prob
self.min_size = min_size
self.avoid_no_bbox = avoid_no_bbox
self.das_anchor_scales = np.array(das_anchor_scales)
def apply(self, sample, context):
"""
Crop the image and modify bounding box.
Operators:
1. Scale the image width and height.
2. Crop the image according to a radom sample.
3. Rescale the bounding box.
4. Determine if the new bbox is satisfied in the new image.
Returns:
sample: the image, bounding box are replaced.
"""
assert 'image' in sample, "image data not found"
im = sample['image']
gt_bbox = sample['gt_bbox']
gt_class = sample['gt_class']
image_height, image_width = im.shape[:2]
gt_bbox[:, 0] /= image_width
gt_bbox[:, 1] /= image_height
gt_bbox[:, 2] /= image_width
gt_bbox[:, 3] /= image_height
gt_score = None
if 'gt_score' in sample:
gt_score = sample['gt_score']
sampled_bbox = []
gt_bbox = gt_bbox.tolist()
prob = np.random.uniform(0., 1.)
if prob > self.sampling_prob: # anchor sampling
assert self.anchor_sampler
for sampler in self.anchor_sampler:
found = 0
for i in range(sampler[1]):
if found >= sampler[0]:
break
sample_bbox = data_anchor_sampling(
gt_bbox, image_width, image_height,
self.das_anchor_scales, self.target_size)
if sample_bbox == 0:
break
if satisfy_sample_constraint_coverage(sampler, sample_bbox,
gt_bbox):
sampled_bbox.append(sample_bbox)
found = found + 1
im = np.array(im)
while sampled_bbox:
idx = int(np.random.uniform(0, len(sampled_bbox)))
sample_bbox = sampled_bbox.pop(idx)
if 'gt_keypoint' in sample.keys():
keypoints = (sample['gt_keypoint'],
sample['keypoint_ignore'])
crop_bbox, crop_class, crop_score, gt_keypoints = \
filter_and_process(sample_bbox, gt_bbox, gt_class,
scores=gt_score,
keypoints=keypoints)
else:
crop_bbox, crop_class, crop_score = filter_and_process(
sample_bbox, gt_bbox, gt_class, scores=gt_score)
crop_bbox, crop_class, crop_score = bbox_area_sampling(
crop_bbox, crop_class, crop_score, self.target_size,
self.min_size)
if self.avoid_no_bbox:
if len(crop_bbox) < 1:
continue
im = crop_image_sampling(im, sample_bbox, image_width,
image_height, self.target_size)
height, width = im.shape[:2]
crop_bbox[:, 0] *= width
crop_bbox[:, 1] *= height
crop_bbox[:, 2] *= width
crop_bbox[:, 3] *= height
sample['image'] = im
sample['gt_bbox'] = crop_bbox
sample['gt_class'] = crop_class
if 'gt_score' in sample:
sample['gt_score'] = crop_score
if 'gt_keypoint' in sample.keys():
sample['gt_keypoint'] = gt_keypoints[0]
sample['keypoint_ignore'] = gt_keypoints[1]
return sample
return sample
else:
for sampler in self.batch_sampler:
found = 0
for i in range(sampler[1]):
if found >= sampler[0]:
break
sample_bbox = generate_sample_bbox_square(
sampler, image_width, image_height)
if satisfy_sample_constraint_coverage(sampler, sample_bbox,
gt_bbox):
sampled_bbox.append(sample_bbox)
found = found + 1
im = np.array(im)
while sampled_bbox:
idx = int(np.random.uniform(0, len(sampled_bbox)))
sample_bbox = sampled_bbox.pop(idx)
sample_bbox = clip_bbox(sample_bbox)
if 'gt_keypoint' in sample.keys():
keypoints = (sample['gt_keypoint'],
sample['keypoint_ignore'])
crop_bbox, crop_class, crop_score, gt_keypoints = \
filter_and_process(sample_bbox, gt_bbox, gt_class,
scores=gt_score,
keypoints=keypoints)
else:
crop_bbox, crop_class, crop_score = filter_and_process(
sample_bbox, gt_bbox, gt_class, scores=gt_score)
# sampling bbox according the bbox area
crop_bbox, crop_class, crop_score = bbox_area_sampling(
crop_bbox, crop_class, crop_score, self.target_size,
self.min_size)
if self.avoid_no_bbox:
if len(crop_bbox) < 1:
continue
xmin = int(sample_bbox[0] * image_width)
xmax = int(sample_bbox[2] * image_width)
ymin = int(sample_bbox[1] * image_height)
ymax = int(sample_bbox[3] * image_height)
im = im[ymin:ymax, xmin:xmax]
height, width = im.shape[:2]
crop_bbox[:, 0] *= width
crop_bbox[:, 1] *= height
crop_bbox[:, 2] *= width
crop_bbox[:, 3] *= height
sample['image'] = im
sample['gt_bbox'] = crop_bbox
sample['gt_class'] = crop_class
if 'gt_score' in sample:
sample['gt_score'] = crop_score
if 'gt_keypoint' in sample.keys():
sample['gt_keypoint'] = gt_keypoints[0]
sample['keypoint_ignore'] = gt_keypoints[1]
return sample
return sample
@register_op
class RandomCrop(BaseOperator):
"""Random crop image and bboxes.
Args:
aspect_ratio (list): aspect ratio of cropped region.
in [min, max] format.
thresholds (list): iou thresholds for decide a valid bbox crop.
scaling (list): ratio between a cropped region and the original image.
in [min, max] format.
num_attempts (int): number of tries before giving up.
allow_no_crop (bool): allow return without actually cropping them.
cover_all_box (bool): ensure all bboxes are covered in the final crop.
is_mask_crop(bool): whether crop the segmentation.
"""
def __init__(self,
aspect_ratio=[.5, 2.],
thresholds=[.0, .1, .3, .5, .7, .9],
scaling=[.3, 1.],
num_attempts=50,
allow_no_crop=True,
cover_all_box=False,
is_mask_crop=False):
super(RandomCrop, self).__init__()
self.aspect_ratio = aspect_ratio
self.thresholds = thresholds
self.scaling = scaling
self.num_attempts = num_attempts
self.allow_no_crop = allow_no_crop
self.cover_all_box = cover_all_box
self.is_mask_crop = is_mask_crop
def crop_segms(self, segms, valid_ids, crop, height, width):
def _crop_poly(segm, crop):
xmin, ymin, xmax, ymax = crop
crop_coord = [xmin, ymin, xmin, ymax, xmax, ymax, xmax, ymin]
crop_p = np.array(crop_coord).reshape(4, 2)
crop_p = Polygon(crop_p)
crop_segm = list()
for poly in segm:
poly = np.array(poly).reshape(len(poly) // 2, 2)
polygon = Polygon(poly)
if not polygon.is_valid:
exterior = polygon.exterior
multi_lines = exterior.intersection(exterior)
polygons = shapely.ops.polygonize(multi_lines)
polygon = MultiPolygon(polygons)
multi_polygon = list()
if isinstance(polygon, MultiPolygon):
multi_polygon = copy.deepcopy(polygon)
else:
multi_polygon.append(copy.deepcopy(polygon))
for per_polygon in multi_polygon:
inter = per_polygon.intersection(crop_p)
if not inter:
continue
if isinstance(inter, (MultiPolygon, GeometryCollection)):
for part in inter:
if not isinstance(part, Polygon):
continue
part = np.squeeze(
np.array(part.exterior.coords[:-1]).reshape(1,
-1))
part[0::2] -= xmin
part[1::2] -= ymin
crop_segm.append(part.tolist())
elif isinstance(inter, Polygon):
crop_poly = np.squeeze(
np.array(inter.exterior.coords[:-1]).reshape(1, -1))
crop_poly[0::2] -= xmin
crop_poly[1::2] -= ymin
crop_segm.append(crop_poly.tolist())
else:
continue
return crop_segm
def _crop_rle(rle, crop, height, width):
if 'counts' in rle and type(rle['counts']) == list:
rle = mask_util.frPyObjects(rle, height, width)
mask = mask_util.decode(rle)
mask = mask[crop[1]:crop[3], crop[0]:crop[2]]
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
return rle
crop_segms = []
for id in valid_ids:
segm = segms[id]
if is_poly(segm):
import copy
import shapely.ops
from shapely.geometry import Polygon, MultiPolygon, GeometryCollection
logging.getLogger("shapely").setLevel(logging.WARNING)
# Polygon format
crop_segms.append(_crop_poly(segm, crop))
else:
# RLE format
import pycocotools.mask as mask_util
crop_segms.append(_crop_rle(segm, crop, height, width))
return crop_segms
def apply(self, sample, context=None):
if 'gt_bbox' in sample and len(sample['gt_bbox']) == 0:
return sample
h, w = sample['image'].shape[:2]
gt_bbox = sample['gt_bbox']
# NOTE Original method attempts to generate one candidate for each
# threshold then randomly sample one from the resulting list.
# Here a short circuit approach is taken, i.e., randomly choose a
# threshold and attempt to find a valid crop, and simply return the
# first one found.
# The probability is not exactly the same, kinda resembling the
# "Monty Hall" problem. Actually carrying out the attempts will affect
# observability (just like opening doors in the "Monty Hall" game).
thresholds = list(self.thresholds)
if self.allow_no_crop:
thresholds.append('no_crop')
np.random.shuffle(thresholds)
for thresh in thresholds:
if thresh == 'no_crop':
return sample
found = False
for i in range(self.num_attempts):
scale = np.random.uniform(*self.scaling)
if self.aspect_ratio is not None:
min_ar, max_ar = self.aspect_ratio
aspect_ratio = np.random.uniform(
max(min_ar, scale**2), min(max_ar, scale**-2))
h_scale = scale / np.sqrt(aspect_ratio)
w_scale = scale * np.sqrt(aspect_ratio)
else:
h_scale = np.random.uniform(*self.scaling)
w_scale = np.random.uniform(*self.scaling)
crop_h = h * h_scale
crop_w = w * w_scale
if self.aspect_ratio is None:
if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
continue
crop_h = int(crop_h)
crop_w = int(crop_w)
crop_y = np.random.randint(0, h - crop_h)
crop_x = np.random.randint(0, w - crop_w)
crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
iou = self._iou_matrix(
gt_bbox, np.array(
[crop_box], dtype=np.float32))
if iou.max() < thresh:
continue
if self.cover_all_box and iou.min() < thresh:
continue
cropped_box, valid_ids = self._crop_box_with_center_constraint(
gt_bbox, np.array(
crop_box, dtype=np.float32))
if valid_ids.size > 0:
found = True
break
if found:
if self.is_mask_crop and 'gt_poly' in sample and len(sample[
'gt_poly']) > 0:
crop_polys = self.crop_segms(
sample['gt_poly'],
valid_ids,
np.array(
crop_box, dtype=np.int64),
h,
w)
if [] in crop_polys:
delete_id = list()
valid_polys = list()
for id, crop_poly in enumerate(crop_polys):
if crop_poly == []:
delete_id.append(id)
else:
valid_polys.append(crop_poly)
valid_ids = np.delete(valid_ids, delete_id)
if len(valid_polys) == 0:
return sample
sample['gt_poly'] = valid_polys
else:
sample['gt_poly'] = crop_polys
if 'gt_segm' in sample:
sample['gt_segm'] = self._crop_segm(sample['gt_segm'],
crop_box)
sample['gt_segm'] = np.take(
sample['gt_segm'], valid_ids, axis=0)
sample['image'] = self._crop_image(sample['image'], crop_box)
sample['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
sample['gt_class'] = np.take(
sample['gt_class'], valid_ids, axis=0)
if 'gt_score' in sample:
sample['gt_score'] = np.take(
sample['gt_score'], valid_ids, axis=0)
if 'is_crowd' in sample:
sample['is_crowd'] = np.take(
sample['is_crowd'], valid_ids, axis=0)
return sample
return sample
def _iou_matrix(self, a, b):
tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
area_o = (area_a[:, np.newaxis] + area_b - area_i)
return area_i / (area_o + 1e-10)
def _crop_box_with_center_constraint(self, box, crop):
cropped_box = box.copy()
cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
cropped_box[:, :2] -= crop[:2]
cropped_box[:, 2:] -= crop[:2]
centers = (box[:, :2] + box[:, 2:]) / 2
valid = np.logical_and(crop[:2] <= centers,
centers < crop[2:]).all(axis=1)
valid = np.logical_and(
valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
return cropped_box, np.where(valid)[0]
def _crop_image(self, img, crop):
x1, y1, x2, y2 = crop
return img[y1:y2, x1:x2, :]
def _crop_segm(self, segm, crop):
x1, y1, x2, y2 = crop
return segm[:, y1:y2, x1:x2]
@register_op
class RandomScaledCrop(BaseOperator):
"""Resize image and bbox based on long side (with optional random scaling),
then crop or pad image to target size.
Args:
target_dim (int): target size.
scale_range (list): random scale range.
interp (int): interpolation method, default to `cv2.INTER_LINEAR`.
"""
def __init__(self,
target_dim=512,
scale_range=[.1, 2.],
interp=cv2.INTER_LINEAR):
super(RandomScaledCrop, self).__init__()
self.target_dim = target_dim
self.scale_range = scale_range
self.interp = interp
def apply(self, sample, context=None):
img = sample['image']
h, w = img.shape[:2]
random_scale = np.random.uniform(*self.scale_range)
dim = self.target_dim
random_dim = int(dim * random_scale)
dim_max = max(h, w)
scale = random_dim / dim_max
resize_w = w * scale
resize_h = h * scale
offset_x = int(max(0, np.random.uniform(0., resize_w - dim)))
offset_y = int(max(0, np.random.uniform(0., resize_h - dim)))
img = cv2.resize(img, (resize_w, resize_h), interpolation=self.interp)
img = np.array(img)
canvas = np.zeros((dim, dim, 3), dtype=img.dtype)
canvas[:min(dim, resize_h), :min(dim, resize_w), :] = img[
offset_y:offset_y + dim, offset_x:offset_x + dim, :]
sample['image'] = canvas
sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
scale_factor = sample['sacle_factor']
sample['scale_factor'] = np.asarray(
[scale_factor[0] * scale, scale_factor[1] * scale],
dtype=np.float32)
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
scale_array = np.array([scale, scale] * 2, dtype=np.float32)
shift_array = np.array([offset_x, offset_y] * 2, dtype=np.float32)
boxes = sample['gt_bbox'] * scale_array - shift_array
boxes = np.clip(boxes, 0, dim - 1)
# filter boxes with no area
area = np.prod(boxes[..., 2:] - boxes[..., :2], axis=1)
valid = (area > 1.).nonzero()[0]
sample['gt_bbox'] = boxes[valid]
sample['gt_class'] = sample['gt_class'][valid]
return sample
@register_op
class Cutmix(BaseOperator):
def __init__(self, alpha=1.5, beta=1.5):
"""
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features, see https://arxiv.org/abs/1905.04899
Cutmix image and gt_bbbox/gt_score
Args:
alpha (float): alpha parameter of beta distribute
beta (float): beta parameter of beta distribute
"""
super(Cutmix, self).__init__()
self.alpha = alpha
self.beta = beta
if self.alpha <= 0.0:
raise ValueError("alpha shold be positive in {}".format(self))
if self.beta <= 0.0:
raise ValueError("beta shold be positive in {}".format(self))
def apply_image(self, img1, img2, factor):
""" _rand_bbox """
h = max(img1.shape[0], img2.shape[0])
w = max(img1.shape[1], img2.shape[1])
cut_rat = np.sqrt(1. - factor)
cut_w = np.int(w * cut_rat)
cut_h = np.int(h * cut_rat)
# uniform
cx = np.random.randint(w)
cy = np.random.randint(h)
bbx1 = np.clip(cx - cut_w // 2, 0, w - 1)
bby1 = np.clip(cy - cut_h // 2, 0, h - 1)
bbx2 = np.clip(cx + cut_w // 2, 0, w - 1)
bby2 = np.clip(cy + cut_h // 2, 0, h - 1)
img_1_pad = np.zeros((h, w, img1.shape[2]), 'float32')
img_1_pad[:img1.shape[0], :img1.shape[1], :] = \
img1.astype('float32')
img_2_pad = np.zeros((h, w, img2.shape[2]), 'float32')
img_2_pad[:img2.shape[0], :img2.shape[1], :] = \
img2.astype('float32')
img_1_pad[bby1:bby2, bbx1:bbx2, :] = img_2_pad[bby1:bby2, bbx1:bbx2, :]
return img_1_pad
def __call__(self, sample, context=None):
if not isinstance(sample, Sequence):
return sample
assert len(sample) == 2, 'cutmix need two samples'
factor = np.random.beta(self.alpha, self.beta)
factor = max(0.0, min(1.0, factor))
if factor >= 1.0:
return sample[0]
if factor <= 0.0:
return sample[1]
img1 = sample[0]['image']
img2 = sample[1]['image']
img = self.apply_image(img1, img2, factor)
gt_bbox1 = sample[0]['gt_bbox']
gt_bbox2 = sample[1]['gt_bbox']
gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
gt_class1 = sample[0]['gt_class']
gt_class2 = sample[1]['gt_class']
gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
gt_score1 = np.ones_like(sample[0]['gt_class'])
gt_score2 = np.ones_like(sample[1]['gt_class'])
gt_score = np.concatenate(
(gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
result = copy.deepcopy(sample[0])
result['image'] = img
result['gt_bbox'] = gt_bbox
result['gt_score'] = gt_score
result['gt_class'] = gt_class
if 'is_crowd' in sample[0]:
is_crowd1 = sample[0]['is_crowd']
is_crowd2 = sample[1]['is_crowd']
is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
result['is_crowd'] = is_crowd
if 'difficult' in sample[0]:
is_difficult1 = sample[0]['difficult']
is_difficult2 = sample[1]['difficult']
is_difficult = np.concatenate(
(is_difficult1, is_difficult2), axis=0)
result['difficult'] = is_difficult
return result
@register_op
class Mixup(BaseOperator):
def __init__(self, alpha=1.5, beta=1.5):
""" Mixup image and gt_bbbox/gt_score
Args:
alpha (float): alpha parameter of beta distribute
beta (float): beta parameter of beta distribute
"""
super(Mixup, self).__init__()
self.alpha = alpha
self.beta = beta
if self.alpha <= 0.0:
raise ValueError("alpha shold be positive in {}".format(self))
if self.beta <= 0.0:
raise ValueError("beta shold be positive in {}".format(self))
def apply_image(self, img1, img2, factor):
h = max(img1.shape[0], img2.shape[0])
w = max(img1.shape[1], img2.shape[1])
img = np.zeros((h, w, img1.shape[2]), 'float32')
img[:img1.shape[0], :img1.shape[1], :] = \
img1.astype('float32') * factor
img[:img2.shape[0], :img2.shape[1], :] += \
img2.astype('float32') * (1.0 - factor)
return img.astype('uint8')
def __call__(self, sample, context=None):
if not isinstance(sample, Sequence):
return sample
assert len(sample) == 2, 'mixup need two samples'
factor = np.random.beta(self.alpha, self.beta)
factor = max(0.0, min(1.0, factor))
if factor >= 1.0:
return sample[0]
if factor <= 0.0:
return sample[1]
im = self.apply_image(sample[0]['image'], sample[1]['image'], factor)
result = copy.deepcopy(sample[0])
result['image'] = im
# apply bbox and score
if 'gt_bbox' in sample[0]:
gt_bbox1 = sample[0]['gt_bbox']
gt_bbox2 = sample[1]['gt_bbox']
gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0)
result['gt_bbox'] = gt_bbox
if 'gt_class' in sample[0]:
gt_class1 = sample[0]['gt_class']
gt_class2 = sample[1]['gt_class']
gt_class = np.concatenate((gt_class1, gt_class2), axis=0)
result['gt_class'] = gt_class
gt_score1 = np.ones_like(sample[0]['gt_class'])
gt_score2 = np.ones_like(sample[1]['gt_class'])
gt_score = np.concatenate(
(gt_score1 * factor, gt_score2 * (1. - factor)), axis=0)
result['gt_score'] = gt_score
if 'is_crowd' in sample[0]:
is_crowd1 = sample[0]['is_crowd']
is_crowd2 = sample[1]['is_crowd']
is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0)
result['is_crowd'] = is_crowd
if 'difficult' in sample[0]:
is_difficult1 = sample[0]['difficult']
is_difficult2 = sample[1]['difficult']
is_difficult = np.concatenate(
(is_difficult1, is_difficult2), axis=0)
result['difficult'] = is_difficult
if 'gt_ide' in sample[0]:
gt_ide1 = sample[0]['gt_ide']
gt_ide2 = sample[1]['gt_ide']
gt_ide = np.concatenate((gt_ide1, gt_ide2), axis=0)
result['gt_ide'] = gt_ide
return result
@register_op
class NormalizeBox(BaseOperator):
"""Transform the bounding box's coornidates to [0,1]."""
def __init__(self):
super(NormalizeBox, self).__init__()
def apply(self, sample, context):
im = sample['image']
gt_bbox = sample['gt_bbox']
height, width, _ = im.shape
for i in range(gt_bbox.shape[0]):
gt_bbox[i][0] = gt_bbox[i][0] / width
gt_bbox[i][1] = gt_bbox[i][1] / height
gt_bbox[i][2] = gt_bbox[i][2] / width
gt_bbox[i][3] = gt_bbox[i][3] / height
sample['gt_bbox'] = gt_bbox
if 'gt_keypoint' in sample.keys():
gt_keypoint = sample['gt_keypoint']
for i in range(gt_keypoint.shape[1]):
if i % 2:
gt_keypoint[:, i] = gt_keypoint[:, i] / height
else:
gt_keypoint[:, i] = gt_keypoint[:, i] / width
sample['gt_keypoint'] = gt_keypoint
return sample
@register_op
class BboxXYXY2XYWH(BaseOperator):
"""
Convert bbox XYXY format to XYWH format.
"""
def __init__(self):
super(BboxXYXY2XYWH, self).__init__()
def apply(self, sample, context=None):
assert 'gt_bbox' in sample
bbox = sample['gt_bbox']
bbox[:, 2:4] = bbox[:, 2:4] - bbox[:, :2]
bbox[:, :2] = bbox[:, :2] + bbox[:, 2:4] / 2.
sample['gt_bbox'] = bbox
return sample
@register_op
class PadBox(BaseOperator):
def __init__(self, num_max_boxes=50):
"""
Pad zeros to bboxes if number of bboxes is less than num_max_boxes.
Args:
num_max_boxes (int): the max number of bboxes
"""
self.num_max_boxes = num_max_boxes
super(PadBox, self).__init__()
def apply(self, sample, context=None):
assert 'gt_bbox' in sample
bbox = sample['gt_bbox']
gt_num = min(self.num_max_boxes, len(bbox))
num_max = self.num_max_boxes
# fields = context['fields'] if context else []
pad_bbox = np.zeros((num_max, 4), dtype=np.float32)
if gt_num > 0:
pad_bbox[:gt_num, :] = bbox[:gt_num, :]
sample['gt_bbox'] = pad_bbox
if 'gt_class' in sample:
pad_class = np.zeros((num_max, ), dtype=np.int32)
if gt_num > 0:
pad_class[:gt_num] = sample['gt_class'][:gt_num, 0]
sample['gt_class'] = pad_class
if 'gt_score' in sample:
pad_score = np.zeros((num_max, ), dtype=np.float32)
if gt_num > 0:
pad_score[:gt_num] = sample['gt_score'][:gt_num, 0]
sample['gt_score'] = pad_score
# in training, for example in op ExpandImage,
# the bbox and gt_class is expandded, but the difficult is not,
# so, judging by it's length
if 'difficult' in sample:
pad_diff = np.zeros((num_max, ), dtype=np.int32)
if gt_num > 0:
pad_diff[:gt_num] = sample['difficult'][:gt_num, 0]
sample['difficult'] = pad_diff
if 'is_crowd' in sample:
pad_crowd = np.zeros((num_max, ), dtype=np.int32)
if gt_num > 0:
pad_crowd[:gt_num] = sample['is_crowd'][:gt_num, 0]
sample['is_crowd'] = pad_crowd
if 'gt_ide' in sample:
pad_ide = np.zeros((num_max, ), dtype=np.int32)
if gt_num > 0:
pad_ide[:gt_num] = sample['gt_ide'][:gt_num, 0]
sample['gt_ide'] = pad_ide
return sample
@register_op
class DebugVisibleImage(BaseOperator):
"""
In debug mode, visualize images according to `gt_box`.
(Currently only supported when not cropping and flipping image.)
"""
def __init__(self, output_dir='output/debug', is_normalized=False):
super(DebugVisibleImage, self).__init__()
self.is_normalized = is_normalized
self.output_dir = output_dir
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
if not isinstance(self.is_normalized, bool):
raise TypeError("{}: input type is invalid.".format(self))
def apply(self, sample, context=None):
image = Image.fromarray(sample['image'].astype(np.uint8))
out_file_name = '{:012d}.jpg'.format(sample['im_id'][0])
width = sample['w']
height = sample['h']
gt_bbox = sample['gt_bbox']
gt_class = sample['gt_class']
draw = ImageDraw.Draw(image)
for i in range(gt_bbox.shape[0]):
if self.is_normalized:
gt_bbox[i][0] = gt_bbox[i][0] * width
gt_bbox[i][1] = gt_bbox[i][1] * height
gt_bbox[i][2] = gt_bbox[i][2] * width
gt_bbox[i][3] = gt_bbox[i][3] * height
xmin, ymin, xmax, ymax = gt_bbox[i]
draw.line(
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
(xmin, ymin)],
width=2,
fill='green')
# draw label
text = str(gt_class[i][0])
tw, th = draw.textsize(text)
draw.rectangle(
[(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill='green')
draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
if 'gt_keypoint' in sample.keys():
gt_keypoint = sample['gt_keypoint']
if self.is_normalized:
for i in range(gt_keypoint.shape[1]):
if i % 2:
gt_keypoint[:, i] = gt_keypoint[:, i] * height
else:
gt_keypoint[:, i] = gt_keypoint[:, i] * width
for i in range(gt_keypoint.shape[0]):
keypoint = gt_keypoint[i]
for j in range(int(keypoint.shape[0] / 2)):
x1 = round(keypoint[2 * j]).astype(np.int32)
y1 = round(keypoint[2 * j + 1]).astype(np.int32)
draw.ellipse(
(x1, y1, x1 + 5, y1 + 5), fill='green', outline='green')
save_path = os.path.join(self.output_dir, out_file_name)
image.save(save_path, quality=95)
return sample
@register_op
class Pad(BaseOperator):
def __init__(self,
size=None,
size_divisor=32,
pad_mode=0,
offsets=None,
fill_value=(127.5, 127.5, 127.5)):
"""
Pad image to a specified size or multiple of size_divisor.
Args:
size (int, Sequence): image target size, if None, pad to multiple of size_divisor, default None
size_divisor (int): size divisor, default 32
pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top
offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1
fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5)
"""
super(Pad, self).__init__()
if not isinstance(size, (int, Sequence)):
raise TypeError(
"Type of target_size is invalid when random_size is True. \
Must be List, now is {}".format(type(size)))
if isinstance(size, int):
size = [size, size]
assert pad_mode in [
-1, 0, 1, 2
], 'currently only supports four modes [-1, 0, 1, 2]'
assert pad_mode == -1 and offsets, 'if pad_mode is -1, offsets should not be None'
self.size = size
self.size_divisor = size_divisor
self.pad_mode = pad_mode
self.fill_value = fill_value
self.offsets = offsets
def apply_segm(self, segms, offsets, im_size, size):
def _expand_poly(poly, x, y):
expanded_poly = np.array(poly)
expanded_poly[0::2] += x
expanded_poly[1::2] += y
return expanded_poly.tolist()
def _expand_rle(rle, x, y, height, width, h, w):
if 'counts' in rle and type(rle['counts']) == list:
rle = mask_util.frPyObjects(rle, height, width)
mask = mask_util.decode(rle)
expanded_mask = np.full((h, w), 0).astype(mask.dtype)
expanded_mask[y:y + height, x:x + width] = mask
rle = mask_util.encode(
np.array(
expanded_mask, order='F', dtype=np.uint8))
return rle
x, y = offsets
height, width = im_size
h, w = size
expanded_segms = []
for segm in segms:
if is_poly(segm):
# Polygon format
expanded_segms.append(
[_expand_poly(poly, x, y) for poly in segm])
else:
# RLE format
import pycocotools.mask as mask_util
expanded_segms.append(
_expand_rle(segm, x, y, height, width, h, w))
return expanded_segms
def apply_bbox(self, bbox, offsets):
return bbox + np.array(offsets * 2, dtype=np.float32)
def apply_keypoint(self, keypoints, offsets):
n = len(keypoints[0]) // 2
return keypoints + np.array(offsets * n, dtype=np.float32)
def apply_image(self, image, offsets, im_size, size):
x, y = offsets
im_h, im_w = im_size
h, w = size
canvas = np.ones((h, w, 3), dtype=np.float32)
canvas *= np.array(self.fill_value, dtype=np.float32)
canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
return canvas
def apply(self, sample, context=None):
im = sample['image']
im_h, im_w = im.shape[:2]
if self.size:
h, w = self.size
assert (
im_h < h and im_w < w
), '(h, w) of target size should be greater than (im_h, im_w)'
else:
h = np.ceil(im_h // self.size_divisor) * self.size_divisor
w = np.ceil(im_w / self.size_divisor) * self.size_divisor
if h == im_h and w == im_w:
return sample
if self.pad_mode == -1:
offset_x, offset_y = self.offsets
elif self.pad_mode == 0:
offset_y, offset_x = 0, 0
elif self.pad_mode == 1:
offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2
else:
offset_y, offset_x = h - im_h, w - im_w
offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w]
sample['image'] = self.apply_image(im, offsets, im_size, size)
if self.pad_mode == 0:
return sample
if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
sample['gt_bbox'] = self.apply_bbox(sample['gt_bbox'], offsets)
if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
sample['gt_poly'] = self.apply_segm(sample['gt_poly'], offsets,
im_size, size)
if 'gt_keypoint' in sample and len(sample['gt_keypoint']) > 0:
sample['gt_keypoint'] = self.apply_keypoint(sample['gt_keypoint'],
offsets)
return sample
@register_op
class Poly2Mask(BaseOperator):
"""
gt poly to mask annotations
"""
def __init__(self):
super(Poly2Mask, self).__init__()
import pycocotools.mask as maskUtils
self.maskutils = maskUtils
def _poly2mask(self, mask_ann, img_h, img_w):
if isinstance(mask_ann, list):
# polygon -- a single object might consist of multiple parts
# we merge all parts into one mask rle code
rles = self.maskutils.frPyObjects(mask_ann, img_h, img_w)
rle = self.maskutils.merge(rles)
elif isinstance(mask_ann['counts'], list):
# uncompressed RLE
rle = self.maskutils.frPyObjects(mask_ann, img_h, img_w)
else:
# rle
rle = mask_ann
mask = self.maskutils.decode(rle)
return mask
def apply(self, sample, context=None):
assert 'gt_poly' in sample
im_h = sample['h']
im_w = sample['w']
masks = [
self._poly2mask(gt_poly, im_h, im_w)
for gt_poly in sample['gt_poly']
]
sample['gt_segm'] = np.asarray(masks).astype(np.uint8)
return sample
@register_op
class Rbox2Poly(BaseOperator):
"""
Convert rbbox format to poly format.
"""
def __init__(self):
super(Rbox2Poly, self).__init__()
def apply(self, sample, context=None):
assert 'gt_rbox' in sample
assert sample['gt_rbox'].shape[1] == 5
rrects = sample['gt_rbox']
x_ctr = rrects[:, 0]
y_ctr = rrects[:, 1]
width = rrects[:, 2]
height = rrects[:, 3]
x1 = x_ctr - width / 2.0
y1 = y_ctr - height / 2.0
x2 = x_ctr + width / 2.0
y2 = y_ctr + height / 2.0
sample['gt_bbox'] = np.stack([x1, y1, x2, y2], axis=1)
polys = bbox_utils.rbox2poly_np(rrects)
sample['gt_rbox2poly'] = polys
return sample
@register_op
class AugmentHSV(BaseOperator):
def __init__(self, fraction=0.50, is_bgr=False):
"""
Augment the SV channel of image data.
Args:
fraction (float): the fraction for augment
is_bgr (bool): whether the image is BGR mode
"""
super(AugmentHSV, self).__init__()
self.fraction = fraction
self.is_bgr = is_bgr
def apply(self, sample, context=None):
img = sample['image']
if self.is_bgr:
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
else:
img_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
S = img_hsv[:, :, 1].astype(np.float32)
V = img_hsv[:, :, 2].astype(np.float32)
a = (random.random() * 2 - 1) * self.fraction + 1
S *= a
if a > 1:
np.clip(S, a_min=0, a_max=255, out=S)
a = (random.random() * 2 - 1) * self.fraction + 1
V *= a
if a > 1:
np.clip(V, a_min=0, a_max=255, out=V)
img_hsv[:, :, 1] = S.astype(np.uint8)
img_hsv[:, :, 2] = V.astype(np.uint8)
if self.is_bgr:
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)
else:
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB, dst=img)
sample['image'] = img
return sample
@register_op
class Norm2PixelBbox(BaseOperator):
"""
Transform the bounding box's coornidates which is in [0,1] to pixels.
"""
def __init__(self):
super(Norm2PixelBbox, self).__init__()
def apply(self, sample, context=None):
assert 'gt_bbox' in sample
bbox = sample['gt_bbox']
height, width = sample['image'].shape[:2]
bbox[:, 0::2] = bbox[:, 0::2] * width
bbox[:, 1::2] = bbox[:, 1::2] * height
sample['gt_bbox'] = bbox
return sample
@register_op
class BboxCXCYWH2XYXY(BaseOperator):
"""
Convert bbox CXCYWH format to XYXY format.
[center_x, center_y, width, height] -> [x0, y0, x1, y1]
"""
def __init__(self):
super(BboxCXCYWH2XYXY, self).__init__()
def apply(self, sample, context=None):
assert 'gt_bbox' in sample
bbox0 = sample['gt_bbox']
bbox = bbox0.copy()
bbox[:, :2] = bbox0[:, :2] - bbox0[:, 2:4] / 2.
bbox[:, 2:4] = bbox0[:, :2] + bbox0[:, 2:4] / 2.
sample['gt_bbox'] = bbox
return sample
@register_op
class RandomPerspective(BaseOperator):
"""
Rotate, tranlate, scale, shear and perspect image and bboxes randomly,
refer to https://github.com/ultralytics/yolov5/blob/develop/utils/datasets.py
Args:
degree (int): rotation degree, uniformly sampled in [-degree, degree]
translate (float): translate fraction, translate_x and translate_y are uniformly sampled
in [0.5 - translate, 0.5 + translate]
scale (float): scale factor, uniformly sampled in [1 - scale, 1 + scale]
shear (int): shear degree, shear_x and shear_y are uniformly sampled in [-shear, shear]
perspective (float): perspective_x and perspective_y are uniformly sampled in [-perspective, perspective]
area_thr (float): the area threshold of bbox to be kept after transformation, default 0.25
fill_value (tuple): value used in case of a constant border, default (114, 114, 114)
"""
def __init__(self,
degree=10,
translate=0.1,
scale=0.1,
shear=10,
perspective=0.0,
border=[0, 0],
area_thr=0.25,
fill_value=(114, 114, 114)):
super(RandomPerspective, self).__init__()
self.degree = degree
self.translate = translate
self.scale = scale
self.shear = shear
self.perspective = perspective
self.border = border
self.area_thr = area_thr
self.fill_value = fill_value
def apply(self, sample, context=None):
im = sample['image']
height = im.shape[0] + self.border[0] * 2
width = im.shape[1] + self.border[1] * 2
# center
C = np.eye(3)
C[0, 2] = -im.shape[1] / 2
C[1, 2] = -im.shape[0] / 2
# perspective
P = np.eye(3)
P[2, 0] = random.uniform(-self.perspective, self.perspective)
P[2, 1] = random.uniform(-self.perspective, self.perspective)
# Rotation and scale
R = np.eye(3)
a = random.uniform(-self.degree, self.degree)
s = random.uniform(1 - self.scale, 1 + self.scale)
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
# Shear
S = np.eye(3)
# shear x (deg)
S[0, 1] = math.tan(
random.uniform(-self.shear, self.shear) * math.pi / 180)
# shear y (deg)
S[1, 0] = math.tan(
random.uniform(-self.shear, self.shear) * math.pi / 180)
# Translation
T = np.eye(3)
T[0, 2] = random.uniform(0.5 - self.translate,
0.5 + self.translate) * width
T[1, 2] = random.uniform(0.5 - self.translate,
0.5 + self.translate) * height
# matmul
# M = T @ S @ R @ P @ C
M = np.eye(3)
for cM in [T, S, R, P, C]:
M = np.matmul(M, cM)
if (self.border[0] != 0) or (self.border[1] != 0) or (
M != np.eye(3)).any():
if self.perspective:
im = cv2.warpPerspective(
im, M, dsize=(width, height), borderValue=self.fill_value)
else:
im = cv2.warpAffine(
im,
M[:2],
dsize=(width, height),
borderValue=self.fill_value)
sample['image'] = im
if sample['gt_bbox'].shape[0] > 0:
sample = transform_bbox(
sample,
M,
width,
height,
area_thr=self.area_thr,
perspective=self.perspective)
return sample
@register_op
class Mosaic(BaseOperator):
"""
Mosaic Data Augmentation, refer to https://github.com/ultralytics/yolov5/blob/develop/utils/datasets.py
"""
def __init__(self,
target_size,
mosaic_border=None,
fill_value=(114, 114, 114)):
super(Mosaic, self).__init__()
self.target_size = target_size
if mosaic_border is None:
mosaic_border = (-target_size // 2, -target_size // 2)
self.mosaic_border = mosaic_border
self.fill_value = fill_value
def __call__(self, sample, context=None):
if not isinstance(sample, Sequence):
return sample
s = self.target_size
yc, xc = [
int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border
]
boxes = [x['gt_bbox'] for x in sample]
labels = [x['gt_class'] for x in sample]
for i in range(len(sample)):
im = sample[i]['image']
h, w, c = im.shape
if i == 0: # top left
image = np.ones(
(s * 2, s * 2, c), dtype=np.uint8) * self.fill_value
# xmin, ymin, xmax, ymax (dst image)
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc
# xmin, ymin, xmax, ymax (src image)
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h
elif i == 1: # top right
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
elif i == 2: # bottom left
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(
y2a - y1a, h)
elif i == 3: # bottom right
x1a, y1a, x2a, y2a = xc, yc, min(xc + w,
s * 2), min(s * 2, yc + h)
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
image[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b]
padw = x1a - x1b
padh = y1a - y1b
boxes[i] = boxes[i] + (padw, padh, padw, padh)
boxes = np.concatenate(boxes, axis=0)
boxes = np.clip(boxes, 0, s * 2)
labels = np.concatenate(labels, axis=0)
if 'is_crowd' in sample[0]:
is_crowd = np.concatenate([x['is_crowd'] for x in sample], axis=0)
if 'difficult' in sample[0]:
difficult = np.concatenate([x['difficult'] for x in sample], axis=0)
sample = sample[0]
sample['image'] = image.astype(np.uint8)
sample['gt_bbox'] = boxes
sample['gt_class'] = labels
if 'is_crowd' in sample:
sample['is_crowd'] = is_crowd
if 'difficult' in sample:
sample['difficult'] = difficult
return sample