forked from PulseFocusPlatform/PulseFocusPlatform
163 lines
3.6 KiB
YAML
163 lines
3.6 KiB
YAML
architecture: SSD
|
|
use_gpu: true
|
|
max_iters: 400000
|
|
snapshot_iter: 20000
|
|
log_iter: 20
|
|
metric: COCO
|
|
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar
|
|
save_dir: output
|
|
weights: output/ssdlite_mobilenet_v3_large/model_final
|
|
# 80(label_class) + 1(background)
|
|
num_classes: 81
|
|
|
|
SSD:
|
|
backbone: MobileNetV3
|
|
multi_box_head: SSDLiteMultiBoxHead
|
|
output_decoder:
|
|
background_label: 0
|
|
keep_top_k: 200
|
|
nms_eta: 1.0
|
|
nms_threshold: 0.45
|
|
nms_top_k: 400
|
|
score_threshold: 0.01
|
|
|
|
MobileNetV3:
|
|
scale: 1.0
|
|
model_name: large
|
|
extra_block_filters: [[256, 512], [128, 256], [128, 256], [64, 128]]
|
|
feature_maps: [5, 7, 8, 9, 10, 11]
|
|
lr_mult_list: [0.25, 0.25, 0.5, 0.5, 0.75]
|
|
conv_decay: 0.00004
|
|
multiplier: 0.5
|
|
|
|
SSDLiteMultiBoxHead:
|
|
aspect_ratios: [[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]]
|
|
base_size: 320
|
|
steps: [16, 32, 64, 107, 160, 320]
|
|
flip: true
|
|
clip: true
|
|
max_ratio: 95
|
|
min_ratio: 20
|
|
offset: 0.5
|
|
conv_decay: 0.00004
|
|
|
|
LearningRate:
|
|
base_lr: 0.4
|
|
schedulers:
|
|
- !CosineDecay
|
|
max_iters: 400000
|
|
- !LinearWarmup
|
|
start_factor: 0.33333
|
|
steps: 2000
|
|
|
|
OptimizerBuilder:
|
|
optimizer:
|
|
momentum: 0.9
|
|
type: Momentum
|
|
regularizer:
|
|
factor: 0.0005
|
|
type: L2
|
|
|
|
TrainReader:
|
|
inputs_def:
|
|
image_shape: [3, 320, 320]
|
|
fields: ['image', 'gt_bbox', 'gt_class']
|
|
dataset:
|
|
!COCODataSet
|
|
dataset_dir: dataset/coco
|
|
anno_path: annotations/instances_train2017.json
|
|
image_dir: train2017
|
|
sample_transforms:
|
|
- !DecodeImage
|
|
to_rgb: true
|
|
- !RandomDistort
|
|
brightness_lower: 0.875
|
|
brightness_upper: 1.125
|
|
is_order: true
|
|
- !RandomExpand
|
|
fill_value: [123.675, 116.28, 103.53]
|
|
- !RandomCrop
|
|
allow_no_crop: false
|
|
- !NormalizeBox {}
|
|
- !ResizeImage
|
|
interp: 1
|
|
target_size: 320
|
|
use_cv2: false
|
|
- !RandomFlipImage
|
|
is_normalized: false
|
|
- !NormalizeImage
|
|
mean: [0.485, 0.456, 0.406]
|
|
std: [0.229, 0.224, 0.225]
|
|
is_scale: true
|
|
is_channel_first: false
|
|
- !Permute
|
|
to_bgr: false
|
|
channel_first: true
|
|
batch_size: 64
|
|
shuffle: true
|
|
drop_last: true
|
|
# Number of working threads/processes. To speed up, can be set to 16 or 32 etc.
|
|
worker_num: 8
|
|
# Size of shared memory used in result queue. After increasing `worker_num`, need expand `memsize`.
|
|
memsize: 8G
|
|
# Buffer size for multi threads/processes.one instance in buffer is one batch data.
|
|
# To speed up, can be set to 64 or 128 etc.
|
|
bufsize: 32
|
|
use_process: true
|
|
|
|
|
|
EvalReader:
|
|
inputs_def:
|
|
image_shape: [3, 320, 320]
|
|
fields: ['image', 'gt_bbox', 'gt_class', 'im_shape', 'im_id']
|
|
dataset:
|
|
!COCODataSet
|
|
dataset_dir: dataset/coco
|
|
anno_path: annotations/instances_val2017.json
|
|
image_dir: val2017
|
|
sample_transforms:
|
|
- !DecodeImage
|
|
to_rgb: true
|
|
- !NormalizeBox {}
|
|
- !ResizeImage
|
|
interp: 1
|
|
target_size: 320
|
|
use_cv2: false
|
|
- !NormalizeImage
|
|
mean: [0.485, 0.456, 0.406]
|
|
std: [0.229, 0.224, 0.225]
|
|
is_scale: true
|
|
is_channel_first: false
|
|
- !Permute
|
|
to_bgr: false
|
|
channel_first: True
|
|
batch_size: 8
|
|
worker_num: 8
|
|
bufsize: 32
|
|
use_process: false
|
|
|
|
TestReader:
|
|
inputs_def:
|
|
image_shape: [3,320,320]
|
|
fields: ['image', 'im_id', 'im_shape']
|
|
dataset:
|
|
!ImageFolder
|
|
anno_path: annotations/instances_val2017.json
|
|
sample_transforms:
|
|
- !DecodeImage
|
|
to_rgb: true
|
|
- !ResizeImage
|
|
interp: 1
|
|
max_size: 0
|
|
target_size: 320
|
|
use_cv2: true
|
|
- !NormalizeImage
|
|
mean: [0.485, 0.456, 0.406]
|
|
std: [0.229, 0.224, 0.225]
|
|
is_scale: true
|
|
is_channel_first: false
|
|
- !Permute
|
|
to_bgr: false
|
|
channel_first: True
|
|
batch_size: 1
|