forked from PulseFocusPlatform/PulseFocusPlatform
165 lines
5.2 KiB
Python
165 lines
5.2 KiB
Python
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import numpy as np
|
|
|
|
try:
|
|
from collections.abc import Sequence
|
|
except Exception:
|
|
from collections import Sequence
|
|
|
|
from ppdet.core.workspace import register, serializable
|
|
from ppdet.utils.download import get_dataset_path
|
|
|
|
|
|
@serializable
|
|
class DataSet(object):
|
|
"""
|
|
Dataset, e.g., coco, pascal voc
|
|
|
|
Args:
|
|
annotation (str): annotation file path
|
|
image_dir (str): directory where image files are stored
|
|
shuffle (bool): shuffle samples
|
|
"""
|
|
|
|
def __init__(self,
|
|
dataset_dir=None,
|
|
image_dir=None,
|
|
anno_path=None,
|
|
sample_num=-1,
|
|
with_background=True,
|
|
use_default_label=False,
|
|
**kwargs):
|
|
super(DataSet, self).__init__()
|
|
self.anno_path = anno_path
|
|
self.image_dir = image_dir if image_dir is not None else ''
|
|
self.dataset_dir = dataset_dir if dataset_dir is not None else ''
|
|
self.sample_num = sample_num
|
|
self.with_background = with_background
|
|
self.use_default_label = use_default_label
|
|
|
|
self.cname2cid = None
|
|
self._imid2path = None
|
|
|
|
def load_roidb_and_cname2cid(self):
|
|
"""load dataset"""
|
|
raise NotImplementedError('%s.load_roidb_and_cname2cid not available' %
|
|
(self.__class__.__name__))
|
|
|
|
def get_roidb(self):
|
|
if not self.roidbs:
|
|
data_dir = get_dataset_path(self.dataset_dir, self.anno_path,
|
|
self.image_dir)
|
|
if data_dir:
|
|
self.dataset_dir = data_dir
|
|
self.load_roidb_and_cname2cid()
|
|
|
|
return self.roidbs
|
|
|
|
def get_cname2cid(self):
|
|
if not self.cname2cid:
|
|
self.load_roidb_and_cname2cid()
|
|
return self.cname2cid
|
|
|
|
def get_anno(self):
|
|
if self.anno_path is None:
|
|
return
|
|
return os.path.join(self.dataset_dir, self.anno_path)
|
|
|
|
def get_imid2path(self):
|
|
return self._imid2path
|
|
|
|
|
|
def _is_valid_file(f, extensions=('.jpg', '.jpeg', '.png', '.bmp')):
|
|
return f.lower().endswith(extensions)
|
|
|
|
|
|
def _make_dataset(data_dir):
|
|
data_dir = os.path.expanduser(data_dir)
|
|
if not os.path.isdir(data_dir):
|
|
raise ('{} should be a dir'.format(data_dir))
|
|
images = []
|
|
for root, _, fnames in sorted(os.walk(data_dir, followlinks=True)):
|
|
for fname in sorted(fnames):
|
|
file_path = os.path.join(root, fname)
|
|
if _is_valid_file(file_path):
|
|
images.append(file_path)
|
|
return images
|
|
|
|
|
|
@register
|
|
@serializable
|
|
class ImageFolder(DataSet):
|
|
"""
|
|
Args:
|
|
dataset_dir (str): root directory for dataset.
|
|
image_dir(list|str): list of image folders or list of image files
|
|
anno_path (str): annotation file path.
|
|
samples (int): number of samples to load, -1 means all
|
|
"""
|
|
|
|
def __init__(self,
|
|
dataset_dir=None,
|
|
image_dir=None,
|
|
anno_path=None,
|
|
sample_num=-1,
|
|
with_background=True,
|
|
use_default_label=False,
|
|
**kwargs):
|
|
super(ImageFolder, self).__init__(dataset_dir, image_dir, anno_path,
|
|
sample_num, with_background,
|
|
use_default_label)
|
|
self.roidbs = None
|
|
self._imid2path = {}
|
|
|
|
def get_roidb(self):
|
|
if not self.roidbs:
|
|
self.roidbs = self._load_images()
|
|
return self.roidbs
|
|
|
|
def set_images(self, images):
|
|
self.image_dir = images
|
|
self.roidbs = self._load_images()
|
|
|
|
def _parse(self):
|
|
image_dir = self.image_dir
|
|
if not isinstance(image_dir, Sequence):
|
|
image_dir = [image_dir]
|
|
images = []
|
|
for im_dir in image_dir:
|
|
if os.path.isdir(im_dir):
|
|
im_dir = os.path.join(self.dataset_dir, im_dir)
|
|
images.extend(_make_dataset(im_dir))
|
|
elif os.path.isfile(im_dir) and _is_valid_file(im_dir):
|
|
images.append(im_dir)
|
|
return images
|
|
|
|
def _load_images(self):
|
|
images = self._parse()
|
|
ct = 0
|
|
records = []
|
|
for image in images:
|
|
assert image != '' and os.path.isfile(image), \
|
|
"Image {} not found".format(image)
|
|
if self.sample_num > 0 and ct >= self.sample_num:
|
|
break
|
|
rec = {'im_id': np.array([ct]), 'im_file': image}
|
|
self._imid2path[ct] = image
|
|
ct += 1
|
|
records.append(rec)
|
|
assert len(records) > 0, "No image file found"
|
|
return records
|