PulseFocusPlatform/build/lib/ppdet/modeling/architectures/cascade_rcnn.py

144 lines
5.3 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['CascadeRCNN']
@register
class CascadeRCNN(BaseArch):
"""
Cascade R-CNN network, see https://arxiv.org/abs/1712.00726
Args:
backbone (object): backbone instance
rpn_head (object): `RPNHead` instance
bbox_head (object): `BBoxHead` instance
bbox_post_process (object): `BBoxPostProcess` instance
neck (object): 'FPN' instance
mask_head (object): `MaskHead` instance
mask_post_process (object): `MaskPostProcess` instance
"""
__category__ = 'architecture'
__inject__ = [
'bbox_post_process',
'mask_post_process',
]
def __init__(self,
backbone,
rpn_head,
bbox_head,
bbox_post_process,
neck=None,
mask_head=None,
mask_post_process=None):
super(CascadeRCNN, self).__init__()
self.backbone = backbone
self.rpn_head = rpn_head
self.bbox_head = bbox_head
self.bbox_post_process = bbox_post_process
self.neck = neck
self.mask_head = mask_head
self.mask_post_process = mask_post_process
self.with_mask = mask_head is not None
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = cfg['neck'] and create(cfg['neck'], **kwargs)
out_shape = neck and neck.out_shape or backbone.out_shape
kwargs = {'input_shape': out_shape}
rpn_head = create(cfg['rpn_head'], **kwargs)
bbox_head = create(cfg['bbox_head'], **kwargs)
out_shape = neck and out_shape or bbox_head.get_head().out_shape
kwargs = {'input_shape': out_shape}
mask_head = cfg['mask_head'] and create(cfg['mask_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"rpn_head": rpn_head,
"bbox_head": bbox_head,
"mask_head": mask_head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
if self.neck is not None:
body_feats = self.neck(body_feats)
if self.training:
rois, rois_num, rpn_loss = self.rpn_head(body_feats, self.inputs)
bbox_loss, bbox_feat = self.bbox_head(body_feats, rois, rois_num,
self.inputs)
rois, rois_num = self.bbox_head.get_assigned_rois()
bbox_targets = self.bbox_head.get_assigned_targets()
if self.with_mask:
mask_loss = self.mask_head(body_feats, rois, rois_num,
self.inputs, bbox_targets, bbox_feat)
return rpn_loss, bbox_loss, mask_loss
else:
return rpn_loss, bbox_loss, {}
else:
rois, rois_num, _ = self.rpn_head(body_feats, self.inputs)
preds, _ = self.bbox_head(body_feats, rois, rois_num, self.inputs)
refined_rois = self.bbox_head.get_refined_rois()
im_shape = self.inputs['im_shape']
scale_factor = self.inputs['scale_factor']
bbox, bbox_num = self.bbox_post_process(
preds, (refined_rois, rois_num), im_shape, scale_factor)
# rescale the prediction back to origin image
bbox_pred = self.bbox_post_process.get_pred(bbox, bbox_num,
im_shape, scale_factor)
if not self.with_mask:
return bbox_pred, bbox_num, None
mask_out = self.mask_head(body_feats, bbox, bbox_num, self.inputs)
origin_shape = self.bbox_post_process.get_origin_shape()
mask_pred = self.mask_post_process(mask_out[:, 0, :, :], bbox_pred,
bbox_num, origin_shape)
return bbox_pred, bbox_num, mask_pred
def get_loss(self, ):
rpn_loss, bbox_loss, mask_loss = self._forward()
loss = {}
loss.update(rpn_loss)
loss.update(bbox_loss)
if self.with_mask:
loss.update(mask_loss)
total_loss = paddle.add_n(list(loss.values()))
loss.update({'loss': total_loss})
return loss
def get_pred(self):
bbox_pred, bbox_num, mask_pred = self._forward()
output = {
'bbox': bbox_pred,
'bbox_num': bbox_num,
}
if self.with_mask:
output.update({'mask': mask_pred})
return output