PulseFocusPlatform/static/ppdet/modeling/target_assigners.py

83 lines
3.0 KiB
Python

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import fluid
from ppdet.core.workspace import register
from ppdet.modeling.ops import BBoxAssigner, MaskAssigner
__all__ = [
'BBoxAssigner',
'MaskAssigner',
'CascadeBBoxAssigner',
]
@register
class CascadeBBoxAssigner(object):
__shared__ = ['num_classes']
def __init__(self,
batch_size_per_im=512,
fg_fraction=.25,
fg_thresh=[0.5, 0.6, 0.7],
bg_thresh_hi=[0.5, 0.6, 0.7],
bg_thresh_lo=[0., 0., 0.],
bbox_reg_weights=[10, 20, 30],
shuffle_before_sample=True,
num_classes=81,
class_aware=False):
super(CascadeBBoxAssigner, self).__init__()
self.batch_size_per_im = batch_size_per_im
self.fg_fraction = fg_fraction
self.fg_thresh = fg_thresh
self.bg_thresh_hi = bg_thresh_hi
self.bg_thresh_lo = bg_thresh_lo
self.bbox_reg_weights = bbox_reg_weights
self.class_nums = num_classes
self.use_random = shuffle_before_sample
self.class_aware = class_aware
def __call__(self, input_rois, feed_vars, curr_stage, max_overlap=None):
curr_bbox_reg_w = [
1. / self.bbox_reg_weights[curr_stage],
1. / self.bbox_reg_weights[curr_stage],
2. / self.bbox_reg_weights[curr_stage],
2. / self.bbox_reg_weights[curr_stage],
]
outs = fluid.layers.generate_proposal_labels(
rpn_rois=input_rois,
gt_classes=feed_vars['gt_class'],
is_crowd=feed_vars['is_crowd'],
gt_boxes=feed_vars['gt_bbox'],
im_info=feed_vars['im_info'],
batch_size_per_im=self.batch_size_per_im,
fg_thresh=self.fg_thresh[curr_stage],
bg_thresh_hi=self.bg_thresh_hi[curr_stage],
bg_thresh_lo=self.bg_thresh_lo[curr_stage],
bbox_reg_weights=curr_bbox_reg_w,
use_random=self.use_random,
class_nums=self.class_nums if self.class_aware else 2,
is_cls_agnostic=not self.class_aware,
is_cascade_rcnn=True
if curr_stage > 0 and not self.class_aware else False,
max_overlap=max_overlap,
return_max_overlap=True)
return outs