PulseFocusPlatform/deploy/lite/run_detection.cc

402 lines
14 KiB
C++

// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fstream>
#include <iostream>
#include <vector>
#include <chrono>
#include <numeric>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h" // NOLINT
using namespace paddle::lite_api; // NOLINT
using namespace std;
struct Object {
cv::Rect rec;
int class_id;
float prob;
};
// Object for storing all preprocessed data
struct ImageBlob {
// image width and height
std::vector<float> im_shape_;
// Buffer for image data after preprocessing
const float* im_data_;
// Scale factor for image size to origin image size
std::vector<float> scale_factor_;
std::vector<float> mean_;
std::vector<float> scale_;
};
void PrintBenchmarkLog(std::vector<double> det_time,
std::map<std::string, std::string> config,
int img_num) {
std::cout << "----------------- Config info ------------------" << std::endl;
std::cout << "runtime_device: armv8" << std::endl;
std::cout << "precision: " << config.at("precision") << std::endl;
std::cout << "num_threads: " << config.at("num_threads") << std::endl;
std::cout << "---------------- Data info ---------------------" << std::endl;
std::cout << "batch_size: " << 1 << std::endl;
std::cout << "---------------- Model info --------------------" << std::endl;
std::cout << "Model_name: " << config.at("model_file") << std::endl;
std::cout << "---------------- Perf info ---------------------" << std::endl;
std::cout << "Total number of predicted data: " << img_num
<< " and total time spent(s): "
<< std::accumulate(det_time.begin(), det_time.end(), 0) << std::endl;
std::cout << "preproce_time(ms): " << det_time[0] / img_num
<< ", inference_time(ms): " << det_time[1] / img_num
<< ", postprocess_time(ms): " << det_time[2] << std::endl;
}
std::vector<std::string> LoadLabels(const std::string &path) {
std::ifstream file;
std::vector<std::string> labels;
file.open(path);
while (file) {
std::string line;
std::getline(file, line);
std::string::size_type pos = line.find(" ");
if (pos != std::string::npos) {
line = line.substr(pos);
}
labels.push_back(line);
}
file.clear();
file.close();
return labels;
}
std::vector<std::string> ReadDict(std::string path) {
std::ifstream in(path);
std::string filename;
std::string line;
std::vector<std::string> m_vec;
if (in) {
while (getline(in, line)) {
m_vec.push_back(line);
}
} else {
std::cout << "no such file" << std::endl;
}
return m_vec;
}
std::vector<std::string> split(const std::string &str,
const std::string &delim) {
std::vector<std::string> res;
if ("" == str)
return res;
char *strs = new char[str.length() + 1];
std::strcpy(strs, str.c_str());
char *d = new char[delim.length() + 1];
std::strcpy(d, delim.c_str());
char *p = std::strtok(strs, d);
while (p) {
string s = p;
res.push_back(s);
p = std::strtok(NULL, d);
}
return res;
}
std::map<std::string, std::string> LoadConfigTxt(std::string config_path) {
auto config = ReadDict(config_path);
std::map<std::string, std::string> dict;
for (int i = 0; i < config.size(); i++) {
std::vector<std::string> res = split(config[i], " ");
dict[res[0]] = res[1];
}
return dict;
}
void PrintConfig(const std::map<std::string, std::string> &config) {
std::cout << "=======PaddleDetection lite demo config======" << std::endl;
for (auto iter = config.begin(); iter != config.end(); iter++) {
std::cout << iter->first << " : " << iter->second << std::endl;
}
std::cout << "===End of PaddleDetection lite demo config===" << std::endl;
}
// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void neon_mean_scale(const float* din,
float* dout,
int size,
const std::vector<float> mean,
const std::vector<float> scale) {
if (mean.size() != 3 || scale.size() != 3) {
std::cerr << "[ERROR] mean or scale size must equal to 3\n";
exit(1);
}
float32x4_t vmean0 = vdupq_n_f32(mean[0]);
float32x4_t vmean1 = vdupq_n_f32(mean[1]);
float32x4_t vmean2 = vdupq_n_f32(mean[2]);
float32x4_t vscale0 = vdupq_n_f32(1.f / scale[0]);
float32x4_t vscale1 = vdupq_n_f32(1.f / scale[1]);
float32x4_t vscale2 = vdupq_n_f32(1.f / scale[2]);
float* dout_c0 = dout;
float* dout_c1 = dout + size;
float* dout_c2 = dout + size * 2;
int i = 0;
for (; i < size - 3; i += 4) {
float32x4x3_t vin3 = vld3q_f32(din);
float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
vst1q_f32(dout_c0, vs0);
vst1q_f32(dout_c1, vs1);
vst1q_f32(dout_c2, vs2);
din += 12;
dout_c0 += 4;
dout_c1 += 4;
dout_c2 += 4;
}
for (; i < size; i++) {
*(dout_c0++) = (*(din++) - mean[0]) * scale[0];
*(dout_c0++) = (*(din++) - mean[1]) * scale[1];
*(dout_c0++) = (*(din++) - mean[2]) * scale[2];
}
}
std::vector<Object> visualize_result(
const float* data,
int count,
float thresh,
cv::Mat& image,
const std::vector<std::string> &class_names) {
if (data == nullptr) {
std::cerr << "[ERROR] data can not be nullptr\n";
exit(1);
}
std::vector<Object> rect_out;
for (int iw = 0; iw < count; iw++) {
int oriw = image.cols;
int orih = image.rows;
if (data[1] > thresh) {
Object obj;
int x = static_cast<int>(data[2]);
int y = static_cast<int>(data[3]);
int w = static_cast<int>(data[4] - data[2] + 1);
int h = static_cast<int>(data[5] - data[3] + 1);
cv::Rect rec_clip =
cv::Rect(x, y, w, h) & cv::Rect(0, 0, image.cols, image.rows);
obj.class_id = static_cast<int>(data[0]);
obj.prob = data[1];
obj.rec = rec_clip;
if (w > 0 && h > 0 && obj.prob <= 1) {
rect_out.push_back(obj);
cv::rectangle(image, rec_clip, cv::Scalar(0, 0, 255), 1, cv::LINE_AA);
std::string str_prob = std::to_string(obj.prob);
std::string text = std::string(class_names[obj.class_id]) + ": " +
str_prob.substr(0, str_prob.find(".") + 4);
int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
double font_scale = 1.f;
int thickness = 1;
cv::Size text_size =
cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
float new_font_scale = w * 0.5 * font_scale / text_size.width;
text_size = cv::getTextSize(
text, font_face, new_font_scale, thickness, nullptr);
cv::Point origin;
origin.x = x + 3;
origin.y = y + text_size.height + 3;
cv::putText(image,
text,
origin,
font_face,
new_font_scale,
cv::Scalar(0, 255, 255),
thickness,
cv::LINE_AA);
std::cout << "detection, image size: " << image.cols << ", "
<< image.rows
<< ", detect object: " << class_names[obj.class_id]
<< ", score: " << obj.prob << ", location: x=" << x
<< ", y=" << y << ", width=" << w << ", height=" << h
<< std::endl;
}
}
data += 6;
}
return rect_out;
}
// Load Model and create model predictor
std::shared_ptr<PaddlePredictor> LoadModel(std::string model_file,
int num_theads) {
MobileConfig config;
config.set_threads(num_theads);
config.set_model_from_file(model_file);
std::shared_ptr<PaddlePredictor> predictor =
CreatePaddlePredictor<MobileConfig>(config);
return predictor;
}
ImageBlob prepare_imgdata(const cv::Mat& img,
std::map<std::string,
std::string> config) {
ImageBlob img_data;
std::vector<int> target_size_;
std::vector<std::string> size_str = split(config.at("Resize"), ",");
transform(size_str.begin(), size_str.end(), back_inserter(target_size_),
[](std::string const& s){return stoi(s);});
int width = target_size_[0];
int height = target_size_[1];
img_data.im_shape_ = {
static_cast<float>(target_size_[0]),
static_cast<float>(target_size_[1])
};
img_data.scale_factor_ = {
static_cast<float>(target_size_[0]) / static_cast<float>(img.rows),
static_cast<float>(target_size_[1]) / static_cast<float>(img.cols)
};
std::vector<float> mean_;
std::vector<float> scale_;
std::vector<std::string> mean_str = split(config.at("mean"), ",");
std::vector<std::string> std_str = split(config.at("std"), ",");
transform(mean_str.begin(), mean_str.end(), back_inserter(mean_),
[](std::string const& s){return stof(s);});
transform(std_str.begin(), std_str.end(), back_inserter(scale_),
[](std::string const& s){return stof(s);});
img_data.mean_ = mean_;
img_data.scale_ = scale_;
return img_data;
}
void preprocess(const cv::Mat& img, const ImageBlob img_data, float* data) {
cv::Mat rgb_img;
cv::cvtColor(img, rgb_img, cv::COLOR_BGR2RGB);
cv::resize(
rgb_img, rgb_img, cv::Size(img_data.im_shape_[0],img_data.im_shape_[1]),
0.f, 0.f, cv::INTER_CUBIC);
cv::Mat imgf;
rgb_img.convertTo(imgf, CV_32FC3, 1 / 255.f);
const float* dimg = reinterpret_cast<const float*>(imgf.data);
neon_mean_scale(
dimg, data, int(img_data.im_shape_[0] * img_data.im_shape_[1]),
img_data.mean_, img_data.scale_);
}
void RunModel(std::map<std::string, std::string> config,
std::string img_path,
const int repeats,
std::vector<double>* times) {
std::string model_file = config.at("model_file");
std::string label_path = config.at("label_path");
// Load Labels
std::vector<std::string> class_names = LoadLabels(label_path);
auto predictor = LoadModel(model_file, stoi(config.at("num_threads")));
cv::Mat img = imread(img_path, cv::IMREAD_COLOR);
auto img_data = prepare_imgdata(img, config);
auto preprocess_start = std::chrono::steady_clock::now();
// 1. Prepare input data from image
// input 0
std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
input_tensor0->Resize({1, 2});
auto* data0 = input_tensor0->mutable_data<float>();
data0[0] = img_data.im_shape_[0];
data0[1] = img_data.im_shape_[1];
// input1
std::unique_ptr<Tensor> input_tensor1(std::move(predictor->GetInput(1)));
input_tensor1->Resize({1, 3, img_data.im_shape_[0], img_data.im_shape_[1]});
auto* data1 = input_tensor1->mutable_data<float>();
preprocess(img, img_data, data1);
// input2
std::unique_ptr<Tensor> input_tensor2(std::move(predictor->GetInput(2)));
input_tensor2->Resize({1, 2});
auto* data2 = input_tensor2->mutable_data<float>();
data2[0] = img_data.scale_factor_[0];
data2[1] = img_data.scale_factor_[1];
auto preprocess_end = std::chrono::steady_clock::now();
// 2. Run predictor
// warm up
for (int i = 0; i < repeats / 2; i++)
{
predictor->Run();
}
auto inference_start = std::chrono::steady_clock::now();
for (int i = 0; i < repeats; i++)
{
predictor->Run();
}
auto inference_end = std::chrono::steady_clock::now();
// 3. Get output and post process
auto postprocess_start = std::chrono::steady_clock::now();
std::unique_ptr<const Tensor> output_tensor(
std::move(predictor->GetOutput(0)));
const float* outptr = output_tensor->data<float>();
auto shape_out = output_tensor->shape();
int64_t cnt = 1;
for (auto& i : shape_out) {
cnt *= i;
}
auto rec_out = visualize_result(
outptr, static_cast<int>(cnt / 6), 0.5f, img, class_names);
std::string result_name =
img_path.substr(0, img_path.find(".")) + "_result.jpg";
cv::imwrite(result_name, img);
auto postprocess_end = std::chrono::steady_clock::now();
std::chrono::duration<float> prep_diff = preprocess_end - preprocess_start;
times->push_back(double(prep_diff.count() * 1000));
std::chrono::duration<float> infer_diff = inference_end - inference_start;
times->push_back(double(infer_diff.count() / repeats * 1000));
std::chrono::duration<float> post_diff = postprocess_end - postprocess_start;
times->push_back(double(post_diff.count() * 1000));
}
int main(int argc, char** argv) {
if (argc < 3) {
std::cerr << "[ERROR] usage: " << argv[0] << " config_path image_path\n";
exit(1);
}
std::string config_path = argv[1];
std::string img_path = argv[2];
// load config
auto config = LoadConfigTxt(config_path);
PrintConfig(config);
bool enable_benchmark = bool(stoi(config.at("enable_benchmark")));
int repeats = enable_benchmark ? 50 : 1;
std::vector<double> det_times;
RunModel(config, img_path, repeats, &det_times);
PrintBenchmarkLog(det_times, config, 1);
return 0;
}