PulseFocusPlatform/static/slim/quantization/eval.py

195 lines
6.4 KiB
Python

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
if parent_path not in sys.path:
sys.path.append(parent_path)
import paddle.fluid as fluid
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
try:
from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results, json_eval_results
import ppdet.utils.checkpoint as checkpoint
from ppdet.utils.check import check_gpu, check_version, check_config, enable_static_mode
from ppdet.data.reader import create_reader
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.cli import ArgsParser
except ImportError as e:
if sys.argv[0].find('static') >= 0:
logger.error("Importing ppdet failed when running static model "
"with error: {}\n"
"please try:\n"
"\t1. run static model under PaddleDetection/static "
"directory\n"
"\t2. run 'pip uninstall ppdet' to uninstall ppdet "
"dynamic version firstly.".format(e))
sys.exit(-1)
else:
raise e
# import paddleslim
from paddleslim.quant import quant_aware, convert
def main():
"""
Main evaluate function
"""
cfg = load_config(FLAGS.config)
merge_config(FLAGS.opt)
check_config(cfg)
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu(cfg.use_gpu)
# check if paddlepaddle version is satisfied
check_version()
main_arch = cfg.architecture
# define executor
place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
# build program
model = create(main_arch)
startup_prog = fluid.Program()
eval_prog = fluid.Program()
with fluid.program_guard(eval_prog, startup_prog):
with fluid.unique_name.guard():
inputs_def = cfg['EvalReader']['inputs_def']
test_feed_vars, loader = model.build_inputs(**inputs_def)
test_fetches = model.eval(test_feed_vars)
eval_prog = eval_prog.clone(True)
reader = create_reader(cfg.EvalReader)
# When iterable mode, set set_sample_list_generator(reader, place)
loader.set_sample_list_generator(reader)
# eval already exists json file
if FLAGS.json_eval:
logger.info(
"In json_eval mode, PaddleDetection will evaluate json files in "
"output_eval directly. And proposal.json, bbox.json and mask.json "
"will be detected by default.")
json_eval_results(
cfg.metric, json_directory=FLAGS.output_eval, dataset=dataset)
return
assert cfg.metric != 'OID', "eval process of OID dataset \
is not supported."
if cfg.metric == "WIDERFACE":
raise ValueError("metric type {} does not support in tools/eval.py, "
"please use tools/face_eval.py".format(cfg.metric))
assert cfg.metric in ['COCO', 'VOC'], \
"unknown metric type {}".format(cfg.metric)
extra_keys = []
if cfg.metric == 'COCO':
extra_keys = ['im_info', 'im_id', 'im_shape']
if cfg.metric == 'VOC':
extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
keys, values, cls = parse_fetches(test_fetches, eval_prog, extra_keys)
# whether output bbox is normalized in model output layer
is_bbox_normalized = False
if hasattr(model, 'is_bbox_normalized') and \
callable(model.is_bbox_normalized):
is_bbox_normalized = model.is_bbox_normalized()
dataset = cfg['EvalReader']['dataset']
sub_eval_prog = None
sub_keys = None
sub_values = None
not_quant_pattern = []
if FLAGS.not_quant_pattern:
not_quant_pattern = FLAGS.not_quant_pattern
config = {
'weight_quantize_type': 'channel_wise_abs_max',
'activation_quantize_type': 'moving_average_abs_max',
'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
'not_quant_pattern': not_quant_pattern
}
eval_prog = quant_aware(eval_prog, place, config, for_test=True)
# load model
exe.run(startup_prog)
if 'weights' in cfg:
checkpoint.load_params(exe, eval_prog, cfg.weights)
eval_prog = convert(eval_prog, place, config, save_int8=False)
compile_program = fluid.CompiledProgram(eval_prog).with_data_parallel()
results = eval_run(exe, compile_program, loader, keys, values, cls, cfg,
sub_eval_prog, sub_keys, sub_values)
# evaluation
resolution = None
if 'mask' in results[0]:
resolution = model.mask_head.resolution
# if map_type not set, use default 11point, only use in VOC eval
map_type = cfg.map_type if 'map_type' in cfg else '11point'
eval_results(
results,
cfg.metric,
cfg.num_classes,
resolution,
is_bbox_normalized,
FLAGS.output_eval,
map_type,
dataset=dataset)
if __name__ == '__main__':
enable_static_mode()
parser = ArgsParser()
parser.add_argument(
"--json_eval",
action='store_true',
default=False,
help="Whether to re eval with already exists bbox.json or mask.json")
parser.add_argument(
"-f",
"--output_eval",
default=None,
type=str,
help="Evaluation file directory, default is current directory.")
parser.add_argument(
"--not_quant_pattern",
nargs='+',
type=str,
help="Layers which name_scope contains string in not_quant_pattern will not be quantized"
)
FLAGS = parser.parse_args()
main()