p9fj35fl6/Gazebo_exercise/gazebo7_7.14.0_exercise/gazebo/math/Matrix4.hh

231 lines
7.6 KiB
C++

/*
* Copyright (C) 2012 Open Source Robotics Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#ifndef _GAZEBO_MATRIX4_HH_
#define _GAZEBO_MATRIX4_HH_
#include <assert.h>
#include <iostream>
#include <ignition/math/Matrix4.hh>
#include "gazebo/math/Vector3.hh"
#include "gazebo/math/Matrix3.hh"
#include "gazebo/util/system.hh"
namespace gazebo
{
namespace math
{
class Quaternion;
class Pose;
/// \addtogroup gazebo_math
/// \{
/// \class Matrix4 Matrix4.hh math/gzmath.hh
/// \brief A 3x3 matrix class
class GZ_MATH_VISIBLE Matrix4
{
/// \brief Constructor
public: Matrix4();
/// \brief Copy constructor
/// \param _m Matrix to copy
public: Matrix4(const Matrix4 &_m);
/// \brief Copy constructor for ignition math
/// \param _m Matrix to copy
public: Matrix4(const ignition::math::Matrix4d &_m);
/// \brief Constructor
/// \param[in] _v00 Row 0, Col 0 value
/// \param[in] _v01 Row 0, Col 1 value
/// \param[in] _v02 Row 0, Col 2 value
/// \param[in] _v03 Row 0, Col 3 value
/// \param[in] _v10 Row 1, Col 0 value
/// \param[in] _v11 Row 1, Col 1 value
/// \param[in] _v12 Row 1, Col 2 value
/// \param[in] _v13 Row 1, Col 3 value
/// \param[in] _v20 Row 2, Col 0 value
/// \param[in] _v21 Row 2, Col 1 value
/// \param[in] _v22 Row 2, Col 2 value
/// \param[in] _v23 Row 2, Col 3 value
/// \param[in] _v30 Row 3, Col 0 value
/// \param[in] _v31 Row 3, Col 1 value
/// \param[in] _v32 Row 3, Col 2 value
/// \param[in] _v33 Row 3, Col 3 value
public: Matrix4(double _v00, double _v01, double _v02, double _v03,
double _v10, double _v11, double _v12, double _v13,
double _v20, double _v21, double _v22, double _v23,
double _v30, double _v31, double _v32, double _v33);
/// \brief Destructor
public: virtual ~Matrix4();
/// \brief Change the values
/// \param[in] _v00 Row 0, Col 0 value
/// \param[in] _v01 Row 0, Col 1 value
/// \param[in] _v02 Row 0, Col 2 value
/// \param[in] _v03 Row 0, Col 3 value
/// \param[in] _v10 Row 1, Col 0 value
/// \param[in] _v11 Row 1, Col 1 value
/// \param[in] _v12 Row 1, Col 2 value
/// \param[in] _v13 Row 1, Col 3 value
/// \param[in] _v20 Row 2, Col 0 value
/// \param[in] _v21 Row 2, Col 1 value
/// \param[in] _v22 Row 2, Col 2 value
/// \param[in] _v23 Row 2, Col 3 value
/// \param[in] _v30 Row 3, Col 0 value
/// \param[in] _v31 Row 3, Col 1 value
/// \param[in] _v32 Row 3, Col 2 value
/// \param[in] _v33 Row 3, Col 3 value
public: void Set(double _v00, double _v01, double _v02, double _v03,
double _v10, double _v11, double _v12, double _v13,
double _v20, double _v21, double _v22, double _v23,
double _v30, double _v31, double _v32, double _v33);
/// \brief Set the translational values [ (0, 3) (1, 3) (2, 3) ]
/// \param[in] _t Values to set
public: void SetTranslate(const Vector3 &_t);
/// \brief Get the translational values as a Vector3
/// \return x,y,z
public: Vector3 GetTranslation() const;
/// \brief Get the rotation as a quaternion
/// \return the rotation
public: Quaternion GetRotation() const;
/// \brief Get the rotation as a Euler angles
/// \return the rotation
public: Vector3 GetEulerRotation(unsigned int solution_number = 1) const;
/// \brief Get the transformation as math::Pose
/// \return the pose
public: math::Pose GetAsPose() const;
/// \brief Set the scale
/// \param[in] _s scale
public: void SetScale(const Vector3 &_s);
/// \brief Return true if the matrix is affine
/// \return true if the matrix is affine, false otherwise
public: bool IsAffine() const;
/// \brief Perform an affine transformation
/// \param _v Vector3 value for the transformation
/// \return The result of the transformation
public: Vector3 TransformAffine(const Vector3 &_v) const;
/// \brief Return the inverse matrix
/// \return Inverse of this matrix.
public: Matrix4 Inverse() const;
/// \brief Equal operator. this = _mat
/// \param _mat Incoming matrix
/// \return itself
public: Matrix4 &operator =(const Matrix4 &_mat);
/// \brief Equal operator for ignition math
/// \param _mat Incoming matrix
/// \return itself
public: Matrix4 &operator=(const ignition::math::Matrix4d &_mat);
/// \brief Equal operator for 3x3 matrix
/// \param _mat Incoming matrix
/// \return itself
public: const Matrix4 & operator =(const Matrix3 &_mat);
/// \brief Multiplication operator
/// \param _mat Incoming matrix
/// \return This matrix * _mat
public: Matrix4 operator*(const Matrix4 &_mat) const;
/// \brief Multiplication operator
/// \param _mat Incoming matrix
/// \return This matrix * _mat
public: Matrix4 operator*(const Matrix3 &_mat) const;
/// \brief Multiplication operator
/// \param _vec Vector3
/// \return Resulting vector from multiplication
public: Vector3 operator*(const Vector3 &_vec) const;
/// \brief Array subscript operator
/// \param[in] _row the row index
/// \return the row
public: inline double *operator[](size_t _row)
{
assert(_row < 4);
return this->m[_row];
}
/// \param[in] _row the row index
/// \return the row
public: inline const double *operator[](size_t _row) const
{
assert(_row < 4);
return this->m[_row];
}
/// \brief Equality operator
/// \param[in] _m Matrix3 to test
/// \return true if the 2 matrices are equal (using the tolerance 1e-6),
/// false otherwise
public: bool operator==(const Matrix4 &_m) const;
/// \brief Convert this matrix to an ignition::math::Matrix4d.
/// \return This matrix as an ignition::math::Matrix4d.
public: ignition::math::Matrix4d Ign() const;
/// \brief Stream insertion operator
/// \param _out output stream
/// \param _m Matrix to output
/// \return the stream
public: friend std::ostream &operator<<(std::ostream &_out,
const gazebo::math::Matrix4 &_m)
{
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
_out << (fabs(_m.m[i][j]) < 1e-6 ? 0 : _m.m[i][j]) << " ";
}
_out << "\n";
}
return _out;
}
/// \brief Identity matrix
public: static const Matrix4 IDENTITY;
/// \brief Zero matrix
public: static const Matrix4 ZERO;
/// \brief The 4x4 matrix
protected: double m[4][4];
};
/// \}
}
}
#endif