p9fj35fl6/Gazebo_exercise/gazebo7_7.14.0_exercise/gazebo/math/Quaternion_TEST.cc

405 lines
14 KiB
C++

/*
* Copyright (C) 2012 Open Source Robotics Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <gtest/gtest.h>
#include "gazebo/math/Helpers.hh"
#include "gazebo/math/Quaternion.hh"
using namespace gazebo;
class QuaternionTest : public ::testing::Test { };
//////////////////////////////////////////////////
TEST_F(QuaternionTest, Quaternion)
{
{
math::Quaternion q;
EXPECT_TRUE(math::equal(q.w, 1.0));
EXPECT_TRUE(math::equal(q.x, 0.0));
EXPECT_TRUE(math::equal(q.y, 0.0));
EXPECT_TRUE(math::equal(q.z, 0.0));
}
{
math::Quaternion q(1, 2, 3, 4);
EXPECT_TRUE(math::equal(q.w, 1.0));
EXPECT_TRUE(math::equal(q.x, 2.0));
EXPECT_TRUE(math::equal(q.y, 3.0));
EXPECT_TRUE(math::equal(q.z, 4.0));
}
{
math::Quaternion q(0, 1, 2);
EXPECT_TRUE(q == math::Quaternion(math::Vector3(0, 1, 2)));
}
math::Quaternion q1(math::Vector3(0, 0, 1), M_PI);
EXPECT_TRUE(math::equal(q1.x, 0.0));
EXPECT_TRUE(math::equal(q1.y, 0.0));
EXPECT_TRUE(math::equal(q1.z, 1.0));
EXPECT_TRUE(math::equal(q1.w, 0.0));
math::Quaternion q(q1);
EXPECT_TRUE(q == q1);
q.SetToIdentity();
EXPECT_TRUE(math::equal(q.w, 1.0));
EXPECT_TRUE(math::equal(q.x, 0.0));
EXPECT_TRUE(math::equal(q.y, 0.0));
EXPECT_TRUE(math::equal(q.z, 0.0));
q = math::Quaternion(M_PI*0.1, M_PI*0.5, M_PI);
EXPECT_TRUE(q == math::Quaternion(0.110616, -0.698401, 0.110616, 0.698401));
EXPECT_TRUE(q.GetLog() ==
math::Quaternion(0, -1.02593, 0.162491, 1.02593));
EXPECT_TRUE(q.GetExp() ==
math::Quaternion(0.545456, -0.588972, 0.093284, 0.588972));
q1 = q;
q1.w = 2.0;
EXPECT_TRUE(q1.GetLog() ==
math::Quaternion(0, -0.698401, 0.110616, 0.698401));
q1.x = 0.000000001;
q1.y = 0.0;
q1.z = 0.0;
q1.w = 0.0;
EXPECT_TRUE(q1.GetExp() == math::Quaternion(1, 0, 0, 0));
q.Invert();
EXPECT_TRUE(q == math::Quaternion(0.110616, 0.698401, -0.110616, -0.698401));
q.SetFromAxis(0, 1, 0, M_PI);
EXPECT_TRUE(q == math::Quaternion(6.12303e-17, 0, 1, 0));
q.SetFromAxis(math::Vector3(1, 0, 0), M_PI);
EXPECT_TRUE(q == math::Quaternion(0, 1, 0, 0));
q.Set(1, 2, 3, 4);
EXPECT_TRUE(math::equal(q.w, 1.0));
EXPECT_TRUE(math::equal(q.x, 2.0));
EXPECT_TRUE(math::equal(q.y, 3.0));
EXPECT_TRUE(math::equal(q.z, 4.0));
q.Normalize();
EXPECT_TRUE(q == math::Quaternion(0.182574, 0.365148, 0.547723, 0.730297));
EXPECT_TRUE(math::equal(q.GetRoll(), 1.4289, 1e-3));
EXPECT_TRUE(math::equal(q.GetPitch(), -0.339837, 1e-3));
EXPECT_TRUE(math::equal(q.GetYaw(), 2.35619, 1e-3));
math::Vector3 axis;
double angle;
q.GetAsAxis(axis, angle);
EXPECT_TRUE(axis == math::Vector3(0.371391, 0.557086, 0.742781));
EXPECT_TRUE(math::equal(angle, 2.77438, 1e-3));
q.Scale(0.1);
EXPECT_TRUE(q == math::Quaternion(0.990394, 0.051354, 0.0770309, 0.102708));
q = q + math::Quaternion(0, 1, 2);
EXPECT_TRUE(q == math::Quaternion(1.46455, -0.352069, 0.336066, 0.841168));
q += q;
EXPECT_TRUE(q == math::Quaternion(2.92911, -0.704137, 0.672131, 1.68234));
q -= math::Quaternion(.4, .2, .1);
EXPECT_TRUE(q == math::Quaternion(1.95416, -0.896677, 0.56453, 1.65341));
q = q - math::Quaternion(0, 1, 2);
EXPECT_TRUE(q == math::Quaternion(1.48, -0.493254, 0.305496, 0.914947));
q *= math::Quaternion(.4, .1, .01);
EXPECT_TRUE(q == math::Quaternion(1.53584, -0.236801, 0.551841, 0.802979));
q = q * 5.0;
EXPECT_TRUE(q == math::Quaternion(7.67918, -1.184, 2.7592, 4.0149));
std::cerr << "[" << q.w << ", " << q.x << ", " << q.y << ", " << q.z << "]\n";
std::cerr << q.RotateVectorReverse(math::Vector3(1, 2, 3)) << "\n";
EXPECT_TRUE(q.RotateVectorReverse(math::Vector3(1, 2, 3)) ==
math::Vector3(-0.104115, 0.4975, 3.70697));
EXPECT_TRUE(math::equal(q.Dot(math::Quaternion(.4, .2, .1)), 7.67183, 1e-3));
EXPECT_TRUE(math::Quaternion::Squad(1.1, math::Quaternion(.1, 0, .2),
math::Quaternion(0, .3, .4), math::Quaternion(.5, .2, 1),
math::Quaternion(0, 0, 2), true) ==
math::Quaternion(0.346807, -0.0511734, -0.0494723, 0.935232));
EXPECT_TRUE(math::Quaternion::EulerToQuaternion(math::Vector3(.1, .2, .3)) ==
math::Quaternion(0.983347, 0.0342708, 0.106021, 0.143572));
q.Round(2);
EXPECT_TRUE(math::equal(-1.18, q.x));
EXPECT_TRUE(math::equal(2.76, q.y));
EXPECT_TRUE(math::equal(4.01, q.z));
EXPECT_TRUE(math::equal(7.68, q.w));
q.x = q.y = q.z = q.w = 0.0;
q.Normalize();
EXPECT_TRUE(q == math::Quaternion());
q.SetFromAxis(0, 0, 0, 0);
EXPECT_TRUE(q == math::Quaternion());
EXPECT_TRUE(math::Quaternion::EulerToQuaternion(0.1, 0.2, 0.3) ==
math::Quaternion(0.983347, 0.0342708, 0.106021, 0.143572));
q.x = q.y = q.z = q.w = 0.0;
q.GetAsAxis(axis, angle);
EXPECT_TRUE(axis == math::Vector3(1, 0, 0));
EXPECT_TRUE(math::equal(angle, 0.0, 1e-3));
{
// simple 180 rotation about yaw, should result in x and y flipping signs
q = math::Quaternion(0, 0, M_PI);
math::Vector3 v = math::Vector3(1, 2, 3);
math::Vector3 r1 = q.RotateVector(v);
math::Vector3 r2 = q.RotateVectorReverse(v);
std::cout << "[" << q.w << ", " << q.x << ", "
<< q.y << ", " << q.z << "]\n";
std::cout << " forward turns [" << v << "] to [" << r1 << "]\n";
std::cout << " reverse turns [" << v << "] to [" << r2 << "]\n";
EXPECT_TRUE(r1 == math::Vector3(-1, -2, 3));
EXPECT_TRUE(r2 == math::Vector3(-1, -2, 3));
}
{
// simple 90 rotation about yaw, should map x to y, y to -x
// simple -90 rotation about yaw, should map x to -y, y to x
q = math::Quaternion(0, 0, 0.5*M_PI);
math::Vector3 v = math::Vector3(1, 2, 3);
math::Vector3 r1 = q.RotateVector(v);
math::Vector3 r2 = q.RotateVectorReverse(v);
std::cout << "[" << q.w << ", " << q.x << ", "
<< q.y << ", " << q.z << "]\n";
std::cout << " forward turns [" << v << "] to [" << r1 << "]\n";
std::cout << " reverse turns [" << v << "] to [" << r2 << "]\n";
std::cout << " x axis [" << q.GetXAxis() << "]\n";
std::cout << " y axis [" << q.GetYAxis() << "]\n";
std::cout << " z axis [" << q.GetZAxis() << "]\n";
EXPECT_TRUE(r1 == math::Vector3(-2, 1, 3));
EXPECT_TRUE(r2 == math::Vector3(2, -1, 3));
EXPECT_TRUE(q.GetInverse().GetXAxis() == math::Vector3(0, -1, 0));
EXPECT_TRUE(q.GetInverse().GetYAxis() == math::Vector3(1, 0, 0));
EXPECT_TRUE(q.GetInverse().GetZAxis() == math::Vector3(0, 0, 1));
}
// Test RPY fixed-body-frame convention:
// Rotate each unit vector in roll and pitch
{
q = math::Quaternion(M_PI/2.0, M_PI/2.0, 0);
math::Vector3 v1(1, 0, 0);
math::Vector3 r1 = q.RotateVector(v1);
// 90 degrees about X does nothing,
// 90 degrees about Y sends point down to -Z
EXPECT_EQ(r1, math::Vector3(0, 0, -1));
math::Vector3 v2(0, 1, 0);
math::Vector3 r2 = q.RotateVector(v2);
// 90 degrees about X sends point to +Z
// 90 degrees about Y sends point to +X
EXPECT_EQ(r2, math::Vector3(1, 0, 0));
math::Vector3 v3(0, 0, 1);
math::Vector3 r3 = q.RotateVector(v3);
// 90 degrees about X sends point to -Y
// 90 degrees about Y does nothing
EXPECT_EQ(r3, math::Vector3(0, -1, 0));
}
{
// now try a harder case (axis[1,2,3], rotation[0.3*pi])
// verified with octave
q.SetFromAxis(math::Vector3(1, 2, 3), 0.3*M_PI);
std::cout << "[" << q.w << ", " << q.x << ", "
<< q.y << ", " << q.z << "]\n";
std::cout << " x [" << q.GetInverse().GetXAxis() << "]\n";
std::cout << " y [" << q.GetInverse().GetYAxis() << "]\n";
std::cout << " z [" << q.GetInverse().GetZAxis() << "]\n";
EXPECT_TRUE(q.GetInverse().GetXAxis() ==
math::Vector3(0.617229, -0.589769, 0.520770));
EXPECT_TRUE(q.GetInverse().GetYAxis() ==
math::Vector3(0.707544, 0.705561, -0.039555));
EXPECT_TRUE(q.GetInverse().GetZAxis() ==
math::Vector3(-0.344106, 0.392882, 0.852780));
// rotate about the axis of rotation should not change axis
math::Vector3 v = math::Vector3(1, 2, 3);
math::Vector3 r1 = q.RotateVector(v);
math::Vector3 r2 = q.RotateVectorReverse(v);
EXPECT_TRUE(r1 == math::Vector3(1, 2, 3));
EXPECT_TRUE(r2 == math::Vector3(1, 2, 3));
// rotate unit vectors
v = math::Vector3(0, 0, 1);
r1 = q.RotateVector(v);
r2 = q.RotateVectorReverse(v);
EXPECT_TRUE(r1 == math::Vector3(0.520770, -0.039555, 0.852780));
EXPECT_TRUE(r2 == math::Vector3(-0.34411, 0.39288, 0.85278));
v = math::Vector3(0, 1, 0);
r1 = q.RotateVector(v);
r2 = q.RotateVectorReverse(v);
EXPECT_TRUE(r1 == math::Vector3(-0.58977, 0.70556, 0.39288));
EXPECT_TRUE(r2 == math::Vector3(0.707544, 0.705561, -0.039555));
v = math::Vector3(1, 0, 0);
r1 = q.RotateVector(v);
r2 = q.RotateVectorReverse(v);
EXPECT_TRUE(r1 == math::Vector3(0.61723, 0.70754, -0.34411));
EXPECT_TRUE(r2 == math::Vector3(0.61723, -0.58977, 0.52077));
EXPECT_TRUE(-q == math::Quaternion(-0.891007, -0.121334,
-0.242668, -0.364002));
EXPECT_TRUE(q.GetAsMatrix3() == math::Matrix3(
0.617229, -0.589769, 0.52077,
0.707544, 0.705561, -0.0395554,
-0.344106, 0.392882, 0.85278));
EXPECT_TRUE(q.GetAsMatrix4() == math::Matrix4(
0.617229, -0.589769, 0.52077, 0,
0.707544, 0.705561, -0.0395554, 0,
-0.344106, 0.392882, 0.85278, 0,
0, 0, 0, 1));
}
// Test quaternion multiplication (rotation) order of application
// if qa rotates frame o to p
// qb rotates frame p to q
// qc rotates frame q to r
// qd rotates frame r to s
// then qd * qc * qb * qa rotates frame o to s
EXPECT_EQ(math::Quaternion(0, 0, 0),
math::Quaternion(0, -0.5*M_PI, 0)*
math::Quaternion(-0.5*M_PI, 0, 0)*
math::Quaternion(0, 0.5*M_PI, 0)*
math::Quaternion(0, 0, 0.5*M_PI));
EXPECT_EQ(math::Quaternion(0, 0, M_PI),
math::Quaternion(0, 0, 0.5*M_PI)*
math::Quaternion(0, 0.5*M_PI, 0)*
math::Quaternion(-0.5*M_PI, 0, 0)*
math::Quaternion(0, -0.5*M_PI, 0));
}
//////////////////////////////////////////////////
TEST_F(QuaternionTest, Integrate)
{
// Integrate by zero, expect no change
{
const math::Quaternion q(0.5, 0.5, 0.5, 0.5);
EXPECT_EQ(q, q.Integrate(math::Vector3::Zero, 1.0));
EXPECT_EQ(q, q.Integrate(math::Vector3::UnitX, 0.0));
EXPECT_EQ(q, q.Integrate(math::Vector3::UnitY, 0.0));
EXPECT_EQ(q, q.Integrate(math::Vector3::UnitZ, 0.0));
}
// Integrate along single axes,
// expect linear change in roll, pitch, yaw
{
const math::Quaternion q(1, 0, 0, 0);
math::Quaternion qRoll = q.Integrate(math::Vector3::UnitX, 1.0);
math::Quaternion qPitch = q.Integrate(math::Vector3::UnitY, 1.0);
math::Quaternion qYaw = q.Integrate(math::Vector3::UnitZ, 1.0);
EXPECT_EQ(qRoll.GetAsEuler(), math::Vector3::UnitX);
EXPECT_EQ(qPitch.GetAsEuler(), math::Vector3::UnitY);
EXPECT_EQ(qYaw.GetAsEuler(), math::Vector3::UnitZ);
}
// Integrate sequentially along single axes in order XYZ,
// expect rotations to match Euler Angles
{
const math::Quaternion q(1, 0, 0, 0);
const double angle = 0.5;
math::Quaternion qX = q.Integrate(math::Vector3::UnitX, angle);
math::Quaternion qXY = qX.Integrate(math::Vector3::UnitY, angle);
EXPECT_EQ(qXY.GetAsEuler(), angle*math::Vector3(1, 1, 0));
}
{
const math::Quaternion q(1, 0, 0, 0);
const double angle = 0.5;
math::Quaternion qX = q.Integrate(math::Vector3::UnitX, angle);
math::Quaternion qXZ = qX.Integrate(math::Vector3::UnitZ, angle);
EXPECT_EQ(qXZ.GetAsEuler(), angle*math::Vector3(1, 0, 1));
}
{
const math::Quaternion q(1, 0, 0, 0);
const double angle = 0.5;
math::Quaternion qY = q.Integrate(math::Vector3::UnitY, angle);
math::Quaternion qYZ = qY.Integrate(math::Vector3::UnitZ, angle);
EXPECT_EQ(qYZ.GetAsEuler(), angle*math::Vector3(0, 1, 1));
}
{
const math::Quaternion q(1, 0, 0, 0);
const double angle = 0.5;
math::Quaternion qX = q.Integrate(math::Vector3::UnitX, angle);
math::Quaternion qXY = qX.Integrate(math::Vector3::UnitY, angle);
math::Quaternion qXYZ = qXY.Integrate(math::Vector3::UnitZ, angle);
EXPECT_EQ(qXYZ.GetAsEuler(), angle*math::Vector3::One);
}
// Integrate sequentially along single axes in order ZYX,
// expect rotations to not match Euler Angles
{
const math::Quaternion q(1, 0, 0, 0);
const double angle = 0.5;
math::Quaternion qZ = q.Integrate(math::Vector3::UnitZ, angle);
math::Quaternion qZY = qZ.Integrate(math::Vector3::UnitY, angle);
EXPECT_NE(qZY.GetAsEuler(), angle*math::Vector3(0, 1, 1));
}
{
const math::Quaternion q(1, 0, 0, 0);
const double angle = 0.5;
math::Quaternion qZ = q.Integrate(math::Vector3::UnitZ, angle);
math::Quaternion qZX = qZ.Integrate(math::Vector3::UnitX, angle);
EXPECT_NE(qZX.GetAsEuler(), angle*math::Vector3(1, 0, 1));
}
{
const math::Quaternion q(1, 0, 0, 0);
const double angle = 0.5;
math::Quaternion qZ = q.Integrate(math::Vector3::UnitZ, angle);
math::Quaternion qZY = qZ.Integrate(math::Vector3::UnitY, angle);
math::Quaternion qZYX = qZY.Integrate(math::Vector3::UnitX, angle);
EXPECT_NE(qZYX.GetAsEuler(), angle*math::Vector3(1, 1, 1));
}
{
const math::Quaternion q(1, 0, 0, 0);
const double angle = 0.5;
math::Quaternion qY = q.Integrate(math::Vector3::UnitY, angle);
math::Quaternion qYX = qY.Integrate(math::Vector3::UnitX, angle);
EXPECT_NE(qYX.GetAsEuler(), angle*math::Vector3(1, 1, 0));
}
// Integrate a full rotation about different axes,
// expect no change.
{
const math::Quaternion q(0.5, 0.5, 0.5, 0.5);
const double fourPi = 4 * M_PI;
math::Quaternion qX = q.Integrate(math::Vector3::UnitX, fourPi);
math::Quaternion qY = q.Integrate(math::Vector3::UnitY, fourPi);
math::Quaternion qZ = q.Integrate(math::Vector3::UnitZ, fourPi);
EXPECT_EQ(q, qX);
EXPECT_EQ(q, qY);
EXPECT_EQ(q, qZ);
}
}