/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /** * Contains code for 3x3 matrices. * \file IceMatrix3x3.h * \author Pierre Terdiman * \date April, 4, 2000 */ /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Include Guard #ifndef __ICEMATRIX3X3_H__ #define __ICEMATRIX3X3_H__ // Forward declarations class Quat; #define MATRIX3X3_EPSILON (1.0e-7f) class ICEMATHS_API Matrix3x3 { public: //! Empty constructor inline_ Matrix3x3() {} //! Constructor from 9 values inline_ Matrix3x3(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22) { m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; } //! Copy constructor inline_ Matrix3x3(const Matrix3x3& mat) { CopyMemory(m, &mat.m, 9*sizeof(float)); } //! Destructor inline_ ~Matrix3x3() {} //! Assign values inline_ void Set(float m00, float m01, float m02, float m10, float m11, float m12, float m20, float m21, float m22) { m[0][0] = m00; m[0][1] = m01; m[0][2] = m02; m[1][0] = m10; m[1][1] = m11; m[1][2] = m12; m[2][0] = m20; m[2][1] = m21; m[2][2] = m22; } //! Sets the scale from a Point. The point is put on the diagonal. inline_ void SetScale(const Point& p) { m[0][0] = p.x; m[1][1] = p.y; m[2][2] = p.z; } //! Sets the scale from floats. Values are put on the diagonal. inline_ void SetScale(float sx, float sy, float sz) { m[0][0] = sx; m[1][1] = sy; m[2][2] = sz; } //! Scales from a Point. Each row is multiplied by a component. inline_ void Scale(const Point& p) { m[0][0] *= p.x; m[0][1] *= p.x; m[0][2] *= p.x; m[1][0] *= p.y; m[1][1] *= p.y; m[1][2] *= p.y; m[2][0] *= p.z; m[2][1] *= p.z; m[2][2] *= p.z; } //! Scales from floats. Each row is multiplied by a value. inline_ void Scale(float sx, float sy, float sz) { m[0][0] *= sx; m[0][1] *= sx; m[0][2] *= sx; m[1][0] *= sy; m[1][1] *= sy; m[1][2] *= sy; m[2][0] *= sz; m[2][1] *= sz; m[2][2] *= sz; } //! Copy from a Matrix3x3 inline_ void Copy(const Matrix3x3& source) { CopyMemory(m, source.m, 9*sizeof(float)); } // Row-column access //! Returns a row. inline_ void GetRow(const udword r, Point& p) const { p.x = m[r][0]; p.y = m[r][1]; p.z = m[r][2]; } //! Returns a row. inline_ const Point& GetRow(const udword r) const { return *(const Point*)&m[r][0]; } //! Returns a row. inline_ Point& GetRow(const udword r) { return *(Point*)&m[r][0]; } //! Sets a row. inline_ void SetRow(const udword r, const Point& p) { m[r][0] = p.x; m[r][1] = p.y; m[r][2] = p.z; } //! Returns a column. inline_ void GetCol(const udword c, Point& p) const { p.x = m[0][c]; p.y = m[1][c]; p.z = m[2][c]; } //! Sets a column. inline_ void SetCol(const udword c, const Point& p) { m[0][c] = p.x; m[1][c] = p.y; m[2][c] = p.z; } //! Computes the trace. The trace is the sum of the 3 diagonal components. inline_ float Trace() const { return m[0][0] + m[1][1] + m[2][2]; } //! Clears the matrix. inline_ void Zero() { ZeroMemory(&m, sizeof(m)); } //! Sets the identity matrix. inline_ void Identity() { Zero(); m[0][0] = m[1][1] = m[2][2] = 1.0f; } //! Checks for identity inline_ bool IsIdentity() const { if(IR(m[0][0])!=IEEE_1_0) return false; if(IR(m[0][1])!=0) return false; if(IR(m[0][2])!=0) return false; if(IR(m[1][0])!=0) return false; if(IR(m[1][1])!=IEEE_1_0) return false; if(IR(m[1][2])!=0) return false; if(IR(m[2][0])!=0) return false; if(IR(m[2][1])!=0) return false; if(IR(m[2][2])!=IEEE_1_0) return false; return true; } //! Checks matrix validity inline_ BOOL IsValid() const { for(udword j=0;j<3;j++) { for(udword i=0;i<3;i++) { if(!IsValidFloat(m[j][i])) return FALSE; } } return TRUE; } //! Makes a skew-symmetric matrix (a.k.a. Star(*) Matrix) //! [ 0.0 -a.z a.y ] //! [ a.z 0.0 -a.x ] //! [ -a.y a.x 0.0 ] //! This is also called a "cross matrix" since for any vectors A and B, //! A^B = Skew(A) * B = - B * Skew(A); inline_ void SkewSymmetric(const Point& a) { m[0][0] = 0.0f; m[0][1] = -a.z; m[0][2] = a.y; m[1][0] = a.z; m[1][1] = 0.0f; m[1][2] = -a.x; m[2][0] = -a.y; m[2][1] = a.x; m[2][2] = 0.0f; } //! Negates the matrix inline_ void Neg() { m[0][0] = -m[0][0]; m[0][1] = -m[0][1]; m[0][2] = -m[0][2]; m[1][0] = -m[1][0]; m[1][1] = -m[1][1]; m[1][2] = -m[1][2]; m[2][0] = -m[2][0]; m[2][1] = -m[2][1]; m[2][2] = -m[2][2]; } //! Neg from another matrix inline_ void Neg(const Matrix3x3& mat) { m[0][0] = -mat.m[0][0]; m[0][1] = -mat.m[0][1]; m[0][2] = -mat.m[0][2]; m[1][0] = -mat.m[1][0]; m[1][1] = -mat.m[1][1]; m[1][2] = -mat.m[1][2]; m[2][0] = -mat.m[2][0]; m[2][1] = -mat.m[2][1]; m[2][2] = -mat.m[2][2]; } //! Add another matrix inline_ void Add(const Matrix3x3& mat) { m[0][0] += mat.m[0][0]; m[0][1] += mat.m[0][1]; m[0][2] += mat.m[0][2]; m[1][0] += mat.m[1][0]; m[1][1] += mat.m[1][1]; m[1][2] += mat.m[1][2]; m[2][0] += mat.m[2][0]; m[2][1] += mat.m[2][1]; m[2][2] += mat.m[2][2]; } //! Sub another matrix inline_ void Sub(const Matrix3x3& mat) { m[0][0] -= mat.m[0][0]; m[0][1] -= mat.m[0][1]; m[0][2] -= mat.m[0][2]; m[1][0] -= mat.m[1][0]; m[1][1] -= mat.m[1][1]; m[1][2] -= mat.m[1][2]; m[2][0] -= mat.m[2][0]; m[2][1] -= mat.m[2][1]; m[2][2] -= mat.m[2][2]; } //! Mac inline_ void Mac(const Matrix3x3& a, const Matrix3x3& b, float s) { m[0][0] = a.m[0][0] + b.m[0][0] * s; m[0][1] = a.m[0][1] + b.m[0][1] * s; m[0][2] = a.m[0][2] + b.m[0][2] * s; m[1][0] = a.m[1][0] + b.m[1][0] * s; m[1][1] = a.m[1][1] + b.m[1][1] * s; m[1][2] = a.m[1][2] + b.m[1][2] * s; m[2][0] = a.m[2][0] + b.m[2][0] * s; m[2][1] = a.m[2][1] + b.m[2][1] * s; m[2][2] = a.m[2][2] + b.m[2][2] * s; } //! Mac inline_ void Mac(const Matrix3x3& a, float s) { m[0][0] += a.m[0][0] * s; m[0][1] += a.m[0][1] * s; m[0][2] += a.m[0][2] * s; m[1][0] += a.m[1][0] * s; m[1][1] += a.m[1][1] * s; m[1][2] += a.m[1][2] * s; m[2][0] += a.m[2][0] * s; m[2][1] += a.m[2][1] * s; m[2][2] += a.m[2][2] * s; } //! this = A * s inline_ void Mult(const Matrix3x3& a, float s) { m[0][0] = a.m[0][0] * s; m[0][1] = a.m[0][1] * s; m[0][2] = a.m[0][2] * s; m[1][0] = a.m[1][0] * s; m[1][1] = a.m[1][1] * s; m[1][2] = a.m[1][2] * s; m[2][0] = a.m[2][0] * s; m[2][1] = a.m[2][1] * s; m[2][2] = a.m[2][2] * s; } inline_ void Add(const Matrix3x3& a, const Matrix3x3& b) { m[0][0] = a.m[0][0] + b.m[0][0]; m[0][1] = a.m[0][1] + b.m[0][1]; m[0][2] = a.m[0][2] + b.m[0][2]; m[1][0] = a.m[1][0] + b.m[1][0]; m[1][1] = a.m[1][1] + b.m[1][1]; m[1][2] = a.m[1][2] + b.m[1][2]; m[2][0] = a.m[2][0] + b.m[2][0]; m[2][1] = a.m[2][1] + b.m[2][1]; m[2][2] = a.m[2][2] + b.m[2][2]; } inline_ void Sub(const Matrix3x3& a, const Matrix3x3& b) { m[0][0] = a.m[0][0] - b.m[0][0]; m[0][1] = a.m[0][1] - b.m[0][1]; m[0][2] = a.m[0][2] - b.m[0][2]; m[1][0] = a.m[1][0] - b.m[1][0]; m[1][1] = a.m[1][1] - b.m[1][1]; m[1][2] = a.m[1][2] - b.m[1][2]; m[2][0] = a.m[2][0] - b.m[2][0]; m[2][1] = a.m[2][1] - b.m[2][1]; m[2][2] = a.m[2][2] - b.m[2][2]; } //! this = a * b inline_ void Mult(const Matrix3x3& a, const Matrix3x3& b) { m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[1][0] + a.m[0][2] * b.m[2][0]; m[0][1] = a.m[0][0] * b.m[0][1] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[2][1]; m[0][2] = a.m[0][0] * b.m[0][2] + a.m[0][1] * b.m[1][2] + a.m[0][2] * b.m[2][2]; m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[1][2] * b.m[2][0]; m[1][1] = a.m[1][0] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[2][1]; m[1][2] = a.m[1][0] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[1][2] * b.m[2][2]; m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[1][0] + a.m[2][2] * b.m[2][0]; m[2][1] = a.m[2][0] * b.m[0][1] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[2][1]; m[2][2] = a.m[2][0] * b.m[0][2] + a.m[2][1] * b.m[1][2] + a.m[2][2] * b.m[2][2]; } //! this = transpose(a) * b inline_ void MultAtB(const Matrix3x3& a, const Matrix3x3& b) { m[0][0] = a.m[0][0] * b.m[0][0] + a.m[1][0] * b.m[1][0] + a.m[2][0] * b.m[2][0]; m[0][1] = a.m[0][0] * b.m[0][1] + a.m[1][0] * b.m[1][1] + a.m[2][0] * b.m[2][1]; m[0][2] = a.m[0][0] * b.m[0][2] + a.m[1][0] * b.m[1][2] + a.m[2][0] * b.m[2][2]; m[1][0] = a.m[0][1] * b.m[0][0] + a.m[1][1] * b.m[1][0] + a.m[2][1] * b.m[2][0]; m[1][1] = a.m[0][1] * b.m[0][1] + a.m[1][1] * b.m[1][1] + a.m[2][1] * b.m[2][1]; m[1][2] = a.m[0][1] * b.m[0][2] + a.m[1][1] * b.m[1][2] + a.m[2][1] * b.m[2][2]; m[2][0] = a.m[0][2] * b.m[0][0] + a.m[1][2] * b.m[1][0] + a.m[2][2] * b.m[2][0]; m[2][1] = a.m[0][2] * b.m[0][1] + a.m[1][2] * b.m[1][1] + a.m[2][2] * b.m[2][1]; m[2][2] = a.m[0][2] * b.m[0][2] + a.m[1][2] * b.m[1][2] + a.m[2][2] * b.m[2][2]; } //! this = a * transpose(b) inline_ void MultABt(const Matrix3x3& a, const Matrix3x3& b) { m[0][0] = a.m[0][0] * b.m[0][0] + a.m[0][1] * b.m[0][1] + a.m[0][2] * b.m[0][2]; m[0][1] = a.m[0][0] * b.m[1][0] + a.m[0][1] * b.m[1][1] + a.m[0][2] * b.m[1][2]; m[0][2] = a.m[0][0] * b.m[2][0] + a.m[0][1] * b.m[2][1] + a.m[0][2] * b.m[2][2]; m[1][0] = a.m[1][0] * b.m[0][0] + a.m[1][1] * b.m[0][1] + a.m[1][2] * b.m[0][2]; m[1][1] = a.m[1][0] * b.m[1][0] + a.m[1][1] * b.m[1][1] + a.m[1][2] * b.m[1][2]; m[1][2] = a.m[1][0] * b.m[2][0] + a.m[1][1] * b.m[2][1] + a.m[1][2] * b.m[2][2]; m[2][0] = a.m[2][0] * b.m[0][0] + a.m[2][1] * b.m[0][1] + a.m[2][2] * b.m[0][2]; m[2][1] = a.m[2][0] * b.m[1][0] + a.m[2][1] * b.m[1][1] + a.m[2][2] * b.m[1][2]; m[2][2] = a.m[2][0] * b.m[2][0] + a.m[2][1] * b.m[2][1] + a.m[2][2] * b.m[2][2]; } //! Makes a rotation matrix mapping vector "from" to vector "to". Matrix3x3& FromTo(const Point& from, const Point& to); //! Set a rotation matrix around the X axis. //! 1 0 0 //! RX = 0 cx sx //! 0 -sx cx void RotX(float angle); //! Set a rotation matrix around the Y axis. //! cy 0 -sy //! RY = 0 1 0 //! sy 0 cy void RotY(float angle); //! Set a rotation matrix around the Z axis. //! cz sz 0 //! RZ = -sz cz 0 //! 0 0 1 void RotZ(float angle); //! cy sx.sy -sy.cx //! RY.RX 0 cx sx //! sy -sx.cy cx.cy void RotYX(float y, float x); //! Make a rotation matrix about an arbitrary axis Matrix3x3& Rot(float angle, const Point& axis); //! Transpose the matrix. void Transpose() { TSwap(m[1][0], m[0][1]); TSwap(m[2][0], m[0][2]); TSwap(m[2][1], m[1][2]); } //! this = Transpose(a) void Transpose(const Matrix3x3& a) { m[0][0] = a.m[0][0]; m[0][1] = a.m[1][0]; m[0][2] = a.m[2][0]; m[1][0] = a.m[0][1]; m[1][1] = a.m[1][1]; m[1][2] = a.m[2][1]; m[2][0] = a.m[0][2]; m[2][1] = a.m[1][2]; m[2][2] = a.m[2][2]; } //! Compute the determinant of the matrix. We use the rule of Sarrus. float Determinant() const { return (m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0] + m[0][2]*m[1][0]*m[2][1]) - (m[2][0]*m[1][1]*m[0][2] + m[2][1]*m[1][2]*m[0][0] + m[2][2]*m[1][0]*m[0][1]); } /* //! Compute a cofactor. Used for matrix inversion. float CoFactor(ubyte row, ubyte column) const { static const sdword gIndex[3+2] = { 0, 1, 2, 0, 1 }; return (m[gIndex[row+1]][gIndex[column+1]]*m[gIndex[row+2]][gIndex[column+2]] - m[gIndex[row+2]][gIndex[column+1]]*m[gIndex[row+1]][gIndex[column+2]]); } */ //! Invert the matrix. Determinant must be different from zero, else matrix can't be inverted. Matrix3x3& Invert() { float Det = Determinant(); // Must be !=0 float OneOverDet = 1.0f / Det; Matrix3x3 Temp; Temp.m[0][0] = +(m[1][1] * m[2][2] - m[2][1] * m[1][2]) * OneOverDet; Temp.m[1][0] = -(m[1][0] * m[2][2] - m[2][0] * m[1][2]) * OneOverDet; Temp.m[2][0] = +(m[1][0] * m[2][1] - m[2][0] * m[1][1]) * OneOverDet; Temp.m[0][1] = -(m[0][1] * m[2][2] - m[2][1] * m[0][2]) * OneOverDet; Temp.m[1][1] = +(m[0][0] * m[2][2] - m[2][0] * m[0][2]) * OneOverDet; Temp.m[2][1] = -(m[0][0] * m[2][1] - m[2][0] * m[0][1]) * OneOverDet; Temp.m[0][2] = +(m[0][1] * m[1][2] - m[1][1] * m[0][2]) * OneOverDet; Temp.m[1][2] = -(m[0][0] * m[1][2] - m[1][0] * m[0][2]) * OneOverDet; Temp.m[2][2] = +(m[0][0] * m[1][1] - m[1][0] * m[0][1]) * OneOverDet; *this = Temp; return *this; } Matrix3x3& Normalize(); //! this = exp(a) Matrix3x3& Exp(const Matrix3x3& a); void FromQuat(const Quat &q); void FromQuatL2(const Quat &q, float l2); // Arithmetic operators //! Operator for Matrix3x3 Plus = Matrix3x3 + Matrix3x3; inline_ Matrix3x3 operator+(const Matrix3x3& mat) const { return Matrix3x3( m[0][0] + mat.m[0][0], m[0][1] + mat.m[0][1], m[0][2] + mat.m[0][2], m[1][0] + mat.m[1][0], m[1][1] + mat.m[1][1], m[1][2] + mat.m[1][2], m[2][0] + mat.m[2][0], m[2][1] + mat.m[2][1], m[2][2] + mat.m[2][2]); } //! Operator for Matrix3x3 Minus = Matrix3x3 - Matrix3x3; inline_ Matrix3x3 operator-(const Matrix3x3& mat) const { return Matrix3x3( m[0][0] - mat.m[0][0], m[0][1] - mat.m[0][1], m[0][2] - mat.m[0][2], m[1][0] - mat.m[1][0], m[1][1] - mat.m[1][1], m[1][2] - mat.m[1][2], m[2][0] - mat.m[2][0], m[2][1] - mat.m[2][1], m[2][2] - mat.m[2][2]); } //! Operator for Matrix3x3 Mul = Matrix3x3 * Matrix3x3; inline_ Matrix3x3 operator*(const Matrix3x3& mat) const { return Matrix3x3( m[0][0]*mat.m[0][0] + m[0][1]*mat.m[1][0] + m[0][2]*mat.m[2][0], m[0][0]*mat.m[0][1] + m[0][1]*mat.m[1][1] + m[0][2]*mat.m[2][1], m[0][0]*mat.m[0][2] + m[0][1]*mat.m[1][2] + m[0][2]*mat.m[2][2], m[1][0]*mat.m[0][0] + m[1][1]*mat.m[1][0] + m[1][2]*mat.m[2][0], m[1][0]*mat.m[0][1] + m[1][1]*mat.m[1][1] + m[1][2]*mat.m[2][1], m[1][0]*mat.m[0][2] + m[1][1]*mat.m[1][2] + m[1][2]*mat.m[2][2], m[2][0]*mat.m[0][0] + m[2][1]*mat.m[1][0] + m[2][2]*mat.m[2][0], m[2][0]*mat.m[0][1] + m[2][1]*mat.m[1][1] + m[2][2]*mat.m[2][1], m[2][0]*mat.m[0][2] + m[2][1]*mat.m[1][2] + m[2][2]*mat.m[2][2]); } //! Operator for Point Mul = Matrix3x3 * Point; inline_ Point operator*(const Point& v) const { return Point(GetRow(0)|v, GetRow(1)|v, GetRow(2)|v); } //! Operator for Matrix3x3 Mul = Matrix3x3 * float; inline_ Matrix3x3 operator*(float s) const { return Matrix3x3( m[0][0]*s, m[0][1]*s, m[0][2]*s, m[1][0]*s, m[1][1]*s, m[1][2]*s, m[2][0]*s, m[2][1]*s, m[2][2]*s); } //! Operator for Matrix3x3 Mul = float * Matrix3x3; inline_ friend Matrix3x3 operator*(float s, const Matrix3x3& mat) { return Matrix3x3( s*mat.m[0][0], s*mat.m[0][1], s*mat.m[0][2], s*mat.m[1][0], s*mat.m[1][1], s*mat.m[1][2], s*mat.m[2][0], s*mat.m[2][1], s*mat.m[2][2]); } //! Operator for Matrix3x3 Div = Matrix3x3 / float; inline_ Matrix3x3 operator/(float s) const { if (!_equal(s, 0.0)) s = 1.0f / s; return Matrix3x3( m[0][0]*s, m[0][1]*s, m[0][2]*s, m[1][0]*s, m[1][1]*s, m[1][2]*s, m[2][0]*s, m[2][1]*s, m[2][2]*s); } //! Operator for Matrix3x3 Div = float / Matrix3x3; inline_ friend Matrix3x3 operator/(float s, const Matrix3x3& mat) { return Matrix3x3( s/mat.m[0][0], s/mat.m[0][1], s/mat.m[0][2], s/mat.m[1][0], s/mat.m[1][1], s/mat.m[1][2], s/mat.m[2][0], s/mat.m[2][1], s/mat.m[2][2]); } //! Operator for Matrix3x3 += Matrix3x3 inline_ Matrix3x3& operator+=(const Matrix3x3& mat) { m[0][0] += mat.m[0][0]; m[0][1] += mat.m[0][1]; m[0][2] += mat.m[0][2]; m[1][0] += mat.m[1][0]; m[1][1] += mat.m[1][1]; m[1][2] += mat.m[1][2]; m[2][0] += mat.m[2][0]; m[2][1] += mat.m[2][1]; m[2][2] += mat.m[2][2]; return *this; } //! Operator for Matrix3x3 -= Matrix3x3 inline_ Matrix3x3& operator-=(const Matrix3x3& mat) { m[0][0] -= mat.m[0][0]; m[0][1] -= mat.m[0][1]; m[0][2] -= mat.m[0][2]; m[1][0] -= mat.m[1][0]; m[1][1] -= mat.m[1][1]; m[1][2] -= mat.m[1][2]; m[2][0] -= mat.m[2][0]; m[2][1] -= mat.m[2][1]; m[2][2] -= mat.m[2][2]; return *this; } //! Operator for Matrix3x3 *= Matrix3x3 inline_ Matrix3x3& operator*=(const Matrix3x3& mat) { Point TempRow; GetRow(0, TempRow); m[0][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0]; m[0][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1]; m[0][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2]; GetRow(1, TempRow); m[1][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0]; m[1][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1]; m[1][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2]; GetRow(2, TempRow); m[2][0] = TempRow.x*mat.m[0][0] + TempRow.y*mat.m[1][0] + TempRow.z*mat.m[2][0]; m[2][1] = TempRow.x*mat.m[0][1] + TempRow.y*mat.m[1][1] + TempRow.z*mat.m[2][1]; m[2][2] = TempRow.x*mat.m[0][2] + TempRow.y*mat.m[1][2] + TempRow.z*mat.m[2][2]; return *this; } //! Operator for Matrix3x3 *= float inline_ Matrix3x3& operator*=(float s) { m[0][0] *= s; m[0][1] *= s; m[0][2] *= s; m[1][0] *= s; m[1][1] *= s; m[1][2] *= s; m[2][0] *= s; m[2][1] *= s; m[2][2] *= s; return *this; } //! Operator for Matrix3x3 /= float inline_ Matrix3x3& operator/=(float s) { if (!_equal(s, 0.0)) s = 1.0f / s; m[0][0] *= s; m[0][1] *= s; m[0][2] *= s; m[1][0] *= s; m[1][1] *= s; m[1][2] *= s; m[2][0] *= s; m[2][1] *= s; m[2][2] *= s; return *this; } // Cast operators //! Cast a Matrix3x3 to a Matrix4x4. operator Matrix4x4() const; //! Cast a Matrix3x3 to a Quat. operator Quat() const; inline_ const Point& operator[](int row) const { return *(const Point*)&m[row][0]; } inline_ Point& operator[](int row) { return *(Point*)&m[row][0]; } public: float m[3][3]; }; #endif // __ICEMATRIX3X3_H__