{ "metadata": { "name": "", "signature": "sha256:45c1808319af897f3e3ee937dc11dd1e1159d1e1d05622ce59a634505ea427b3" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# InertiaMsgsTest::SetPendulumInertia\n", "\n", "This documents the effect of moment of inertia on the expected natural frequency in the pendulum test.\n", "\n", "## Pendulum dimensions\n", "\n", "![Pendulum dimensions](pendulum.svg)\n", "\n", "A pendulum is illustrated with distance $L$ between the pin joint and center of mass.\n", "The pendulum is modeled as a box of mass $m$ with overall length $2L$ and width $L/5$.\n", "\n", "## Moment of inertia\n", "\n", "Computing the moment of inertia requires specifying a location on the body and an axis direction.\n", "In the following equation, the moment of inertia $I$ is computed\n", "at the center of mass along an axis parallel to the axis of rotation:\n", "\n", "$I = \\frac{m}{12} ((2L)^2 + (\\frac{L}{5})^2)$\n", "\n", "$I = mL^2 (\\frac{1}{3} + \\frac{1}{300})$\n", "\n", "$I = \\frac{101}{300} mL^2$\n", "\n", "## Natural frequency\n", "\n", "With gravity $g$ and pendulum angle $\\theta$, the equations of motion are given as:\n", "\n", "$(I + mL^2) \\ddot{\\theta} + mgL * sin(\\theta) = 0$\n", "\n", "Factoring out $mL^2$ and dividing by $mgL$,\n", "\n", "$\\frac{mL^2}{mgL} (\\frac{I}{mL^2} + 1) \\ddot{\\theta} + sin(\\theta) = 0$\n", "\n", "$\\frac{L}{g} (\\frac{I}{mL^2} + 1) \\ddot{\\theta} + sin(\\theta) = 0$\n", "\n", "With the value of $I$ computed above,\n", "\n", "$ \\frac{401}{300} \\frac{L}{g} \\ddot{\\theta} + sin(\\theta) = 0$\n", "\n", "Then when $\\theta$ is small, $sin(\\theta) \\approx \\theta$\n", "and the pendulum will have an approximately sinusoidal trajectory.\n", "The frequency $\\omega$ of the sinusoidal trajectory satisfies the following:\n", "\n", "$ \\frac{401}{300} \\frac{L}{g} \\omega^2 = 1$\n", "\n", "$ \\omega^2 = \\frac{300}{401} \\frac{g}{L} $\n", "\n", "The frequency $f$ in Hz is then:\n", "\n", "$ f = \\frac{1}{2\\pi} \\sqrt{\\frac{300}{401} \\frac{g}{L}}$\n", "\n", "## Modified natural frequency with larger inertia\n", "\n", "Suppose the inertia $I$ is artificially increased by a factor of $2$:\n", "\n", "$I = \\frac{101}{150} mL^2$\n", "\n", "Then the natural frequency changes as follows:\n", "\n", "$\\frac{L}{g} (\\frac{I}{mL^2} + 1) \\ddot{\\theta} + sin(\\theta) = 0$\n", "\n", "$ \\frac{251}{150} \\frac{L}{g} \\ddot{\\theta} + sin(\\theta) = 0$\n", "\n", "$ f = \\frac{1}{2\\pi} \\sqrt{\\frac{150}{251} \\frac{g}{L}}$\n", "\n" ] }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }