ppovb5fc7/gazebo/deps/opende/include/ode/odemath.h

509 lines
16 KiB
C++

/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
#ifndef _ODE_ODEMATH_H_
#define _ODE_ODEMATH_H_
#include <ode/common.h>
#include <cmath>
/*
* macro to access elements i,j in an NxM matrix A, independent of the
* matrix storage convention.
*/
#define dACCESS33(A,i,j) ((A)[(i)*4+(j)])
/*
* Macro to test for valid floating point values
*/
#define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2])))
#define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]) || dIsNan(v[3])))
#define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11])))
#define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) ))
// Some vector math
PURE_INLINE void dAddVectors3(dReal *res, const dReal *a, const dReal *b)
{
dReal res_0, res_1, res_2;
res_0 = a[0] + b[0];
res_1 = a[1] + b[1];
res_2 = a[2] + b[2];
// Only assign after all the calculations are over to avoid incurring memory aliasing
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
PURE_INLINE void dSubtractVectors3(dReal *res, const dReal *a, const dReal *b)
{
dReal res_0, res_1, res_2;
res_0 = a[0] - b[0];
res_1 = a[1] - b[1];
res_2 = a[2] - b[2];
// Only assign after all the calculations are over to avoid incurring memory aliasing
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
PURE_INLINE void dAddScaledVectors3(dReal *res, const dReal *a, const dReal *b, dReal a_scale, dReal b_scale)
{
dReal res_0, res_1, res_2;
res_0 = a_scale * a[0] + b_scale * b[0];
res_1 = a_scale * a[1] + b_scale * b[1];
res_2 = a_scale * a[2] + b_scale * b[2];
// Only assign after all the calculations are over to avoid incurring memory aliasing
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
PURE_INLINE void dScaleVector3(dReal *res, dReal nScale)
{
res[0] *= nScale ;
res[1] *= nScale ;
res[2] *= nScale ;
}
PURE_INLINE void dNegateVector3(dReal *res)
{
res[0] = -res[0];
res[1] = -res[1];
res[2] = -res[2];
}
PURE_INLINE void dCopyVector3(dReal *res, const dReal *a)
{
dReal res_0, res_1, res_2;
res_0 = a[0];
res_1 = a[1];
res_2 = a[2];
// Only assign after all the calculations are over to avoid incurring memory aliasing
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
PURE_INLINE void dCopyScaledVector3(dReal *res, const dReal *a, dReal nScale)
{
dReal res_0, res_1, res_2;
res_0 = a[0] * nScale;
res_1 = a[1] * nScale;
res_2 = a[2] * nScale;
// Only assign after all the calculations are over to avoid incurring memory aliasing
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
PURE_INLINE void dCopyNegatedVector3(dReal *res, const dReal *a)
{
dReal res_0, res_1, res_2;
res_0 = -a[0];
res_1 = -a[1];
res_2 = -a[2];
// Only assign after all the calculations are over to avoid incurring memory aliasing
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
PURE_INLINE void dCopyVector4(dReal *res, const dReal *a)
{
dReal res_0, res_1, res_2, res_3;
res_0 = a[0];
res_1 = a[1];
res_2 = a[2];
res_3 = a[3];
// Only assign after all the calculations are over to avoid incurring memory aliasing
res[0] = res_0; res[1] = res_1; res[2] = res_2; res[3] = res_3;
}
PURE_INLINE void dCopyMatrix4x4(dReal *res, const dReal *a)
{
dCopyVector4(res + 0, a + 0);
dCopyVector4(res + 4, a + 4);
dCopyVector4(res + 8, a + 8);
}
PURE_INLINE void dCopyMatrix4x3(dReal *res, const dReal *a)
{
dCopyVector3(res + 0, a + 0);
dCopyVector3(res + 4, a + 4);
dCopyVector3(res + 8, a + 8);
}
PURE_INLINE void dGetMatrixColumn3(dReal *res, const dReal *a, unsigned n)
{
dReal res_0, res_1, res_2;
res_0 = a[n + 0];
res_1 = a[n + 4];
res_2 = a[n + 8];
// Only assign after all the calculations are over to avoid incurring memory aliasing
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
PURE_INLINE dReal dCalcVectorLength3(const dReal *a)
{
return dSqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);
}
PURE_INLINE dReal dCalcVectorLengthSquare3(const dReal *a)
{
return (a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);
}
PURE_INLINE dReal dCalcPointDepth3(const dReal *test_p, const dReal *plane_p, const dReal *plane_n)
{
return (plane_p[0] - test_p[0]) * plane_n[0] + (plane_p[1] - test_p[1]) * plane_n[1] + (plane_p[2] - test_p[2]) * plane_n[2];
}
/*
* 3-way dot product. _dCalcVectorDot3 means that elements of `a' and `b' are spaced
* step_a and step_b indexes apart respectively. dCalcVectorDot3() means dDot311.
*/
PURE_INLINE dReal _dCalcVectorDot3(const dReal *a, const dReal *b, unsigned step_a, unsigned step_b)
{
return a[0] * b[0] + a[step_a] * b[step_b] + a[2 * step_a] * b[2 * step_b];
}
PURE_INLINE dReal dCalcVectorDot3 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,1); }
PURE_INLINE dReal dCalcVectorDot3_13 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,3); }
PURE_INLINE dReal dCalcVectorDot3_31 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,1); }
PURE_INLINE dReal dCalcVectorDot3_33 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,3); }
PURE_INLINE dReal dCalcVectorDot3_14 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,4); }
PURE_INLINE dReal dCalcVectorDot3_41 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,1); }
PURE_INLINE dReal dCalcVectorDot3_44 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,4); }
/*
* cross product, set res = a x b. _dCalcVectorCross3 means that elements of `res', `a'
* and `b' are spaced step_res, step_a and step_b indexes apart respectively.
* dCalcVectorCross3() means dCross3111.
*/
PURE_INLINE void _dCalcVectorCross3(dReal *res, const dReal *a, const dReal *b, unsigned step_res, unsigned step_a, unsigned step_b)
{
dReal res_0, res_1, res_2;
res_0 = a[ step_a]*b[2*step_b] - a[2*step_a]*b[ step_b];
res_1 = a[2*step_a]*b[ 0] - a[ 0]*b[2*step_b];
res_2 = a[ 0]*b[ step_b] - a[ step_a]*b[ 0];
// Only assign after all the calculations are over to avoid incurring memory aliasing
res[ 0] = res_0;
res[ step_res] = res_1;
res[2*step_res] = res_2;
}
PURE_INLINE void dCalcVectorCross3 (dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 1); }
PURE_INLINE void dCalcVectorCross3_114(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 4); }
PURE_INLINE void dCalcVectorCross3_141(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 1); }
PURE_INLINE void dCalcVectorCross3_144(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 4); }
PURE_INLINE void dCalcVectorCross3_411(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 1); }
PURE_INLINE void dCalcVectorCross3_414(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 4); }
PURE_INLINE void dCalcVectorCross3_441(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 1); }
PURE_INLINE void dCalcVectorCross3_444(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 4); }
PURE_INLINE void dAddVectorCross3(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dCalcVectorCross3(tmp, a, b);
dAddVectors3(res, res, tmp);
}
PURE_INLINE void dSubtractVectorCross3(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dCalcVectorCross3(tmp, a, b);
dSubtractVectors3(res, res, tmp);
}
/*
* set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b.
* A is stored by rows, and has `skip' elements per row. the matrix is
* assumed to be already zero, so this does not write zero elements!
* if (plus,minus) is (+,-) then a positive version will be written.
* if (plus,minus) is (-,+) then a negative version will be written.
*/
PURE_INLINE void dSetCrossMatrixPlus(dReal *res, const dReal *a, unsigned skip)
{
const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2];
res[1] = -a_2;
res[2] = +a_1;
res[skip+0] = +a_2;
res[skip+2] = -a_0;
res[2*skip+0] = -a_1;
res[2*skip+1] = +a_0;
}
PURE_INLINE void dSetCrossMatrixMinus(dReal *res, const dReal *a, unsigned skip)
{
const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2];
res[1] = +a_2;
res[2] = -a_1;
res[skip+0] = -a_2;
res[skip+2] = +a_0;
res[2*skip+0] = +a_1;
res[2*skip+1] = -a_0;
}
/*
* compute the distance between two 3D-vectors
*/
PURE_INLINE dReal dCalcPointsDistance3(const dReal *a, const dReal *b)
{
dReal res;
dReal tmp[3];
dSubtractVectors3(tmp, a, b);
res = dCalcVectorLength3(tmp);
return res;
}
/*
* special case matrix multiplication, with operator selection
*/
/// res(3X1) = a(3X3) * b(3X1)
PURE_INLINE void dMultiplyHelper0_331(dReal *res, const dReal *a, const dReal *b)
{
dReal res_0, res_1, res_2;
res_0 = dCalcVectorDot3(a, b);
res_1 = dCalcVectorDot3(a + 4, b);
res_2 = dCalcVectorDot3(a + 8, b);
// Only assign after all the calculations are over to avoid incurring memory aliasing
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
/// res(3X1) = a'(3X3) * b(3X1)
PURE_INLINE void dMultiplyHelper1_331(dReal *res, const dReal *a, const dReal *b)
{
dReal res_0, res_1, res_2;
res_0 = dCalcVectorDot3_41(a, b);
res_1 = dCalcVectorDot3_41(a + 1, b);
res_2 = dCalcVectorDot3_41(a + 2, b);
// Only assign after all the calculations are over to avoid incurring memory aliasing
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
/// res(1X3) = a(1X3) * b(3X3)
PURE_INLINE void dMultiplyHelper0_133(dReal *res, const dReal *a, const dReal *b)
{
dMultiplyHelper1_331(res, b, a);
}
/// res(1X3) = a'(3X3) * b(first column from a 3X3 matrix)
PURE_INLINE void dMultiplyHelper1_133(dReal *res, const dReal *a, const dReal *b)
{
dReal res_0, res_1, res_2;
res_0 = dCalcVectorDot3_44(a, b);
res_1 = dCalcVectorDot3_44(a + 1, b);
res_2 = dCalcVectorDot3_44(a + 2, b);
// Only assign after all the calculations are over to avoid incurring memory aliasing
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
/*
Note: NEVER call any of these functions/macros with the same variable for A and C,
it is not equivalent to A*=B.
*/
PURE_INLINE void dMultiply0_331(dReal *res, const dReal *a, const dReal *b)
{
dMultiplyHelper0_331(res, a, b);
}
PURE_INLINE void dMultiply1_331(dReal *res, const dReal *a, const dReal *b)
{
dMultiplyHelper1_331(res, a, b);
}
PURE_INLINE void dMultiply0_133(dReal *res, const dReal *a, const dReal *b)
{
dMultiplyHelper0_133(res, a, b);
}
/// res(3X3) = a(3X3) * b(3X3)
PURE_INLINE void dMultiply0_333(dReal *res, const dReal *a, const dReal *b)
{
dMultiplyHelper0_133(res + 0, a + 0, b);
dMultiplyHelper0_133(res + 4, a + 4, b);
dMultiplyHelper0_133(res + 8, a + 8, b);
}
/// res(3X3) = a'(3X3) * b(3X3)
PURE_INLINE void dMultiply1_333(dReal *res, const dReal *a, const dReal *b)
{
dMultiplyHelper1_133(res + 0, b, a + 0);
dMultiplyHelper1_133(res + 4, b, a + 1);
dMultiplyHelper1_133(res + 8, b, a + 2);
}
/// res(3X3) = a(3X3) * b'(3X3)
PURE_INLINE void dMultiply2_333(dReal *res, const dReal *a, const dReal *b)
{
dMultiplyHelper0_331(res + 0, b, a + 0);
dMultiplyHelper0_331(res + 4, b, a + 4);
dMultiplyHelper0_331(res + 8, b, a + 8);
}
PURE_INLINE void dMultiplyAdd0_331(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dMultiplyHelper0_331(tmp, a, b);
dAddVectors3(res, res, tmp);
}
PURE_INLINE void dMultiplyAdd1_331(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dMultiplyHelper1_331(tmp, a, b);
dAddVectors3(res, res, tmp);
}
PURE_INLINE void dMultiplyAdd0_133(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dMultiplyHelper0_133(tmp, a, b);
dAddVectors3(res, res, tmp);
}
PURE_INLINE void dMultiplyAdd0_333(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dMultiplyHelper0_133(tmp, a + 0, b);
dAddVectors3(res+ 0, res + 0, tmp);
dMultiplyHelper0_133(tmp, a + 4, b);
dAddVectors3(res + 4, res + 4, tmp);
dMultiplyHelper0_133(tmp, a + 8, b);
dAddVectors3(res + 8, res + 8, tmp);
}
PURE_INLINE void dMultiplyAdd1_333(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dMultiplyHelper1_133(tmp, b, a + 0);
dAddVectors3(res + 0, res + 0, tmp);
dMultiplyHelper1_133(tmp, b, a + 1);
dAddVectors3(res + 4, res + 4, tmp);
dMultiplyHelper1_133(tmp, b, a + 2);
dAddVectors3(res + 8, res + 8, tmp);
}
PURE_INLINE void dMultiplyAdd2_333(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dMultiplyHelper0_331(tmp, b, a + 0);
dAddVectors3(res + 0, res + 0, tmp);
dMultiplyHelper0_331(tmp, b, a + 4);
dAddVectors3(res + 4, res + 4, tmp);
dMultiplyHelper0_331(tmp, b, a + 8);
dAddVectors3(res + 8, res + 8, tmp);
}
// Include legacy macros here
#include <ode/odemath_legacy.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* normalize 3x1 and 4x1 vectors (i.e. scale them to unit length)
*/
// For DLL export
ODE_API int dSafeNormalize3 (dVector3 a);
ODE_API int dSafeNormalize4 (dVector4 a);
ODE_API void dNormalize3 (dVector3 a); // Potentially asserts on zero vec
ODE_API void dNormalize4 (dVector4 a); // Potentially asserts on zero vec
#if defined(__ODE__)
int _dSafeNormalize3 (dVector3 a);
int _dSafeNormalize4 (dVector4 a);
PURE_INLINE void _dNormalize3(dVector3 a)
{
int bNormalizationResult = _dSafeNormalize3(a);
dIASSERT(bNormalizationResult);
dVARIABLEUSED(bNormalizationResult);
}
PURE_INLINE void _dNormalize4(dVector4 a)
{
int bNormalizationResult = _dSafeNormalize4(a);
dIASSERT(bNormalizationResult);
dVARIABLEUSED(bNormalizationResult);
}
// For internal use
#define dSafeNormalize3(a) _dSafeNormalize3(a)
#define dSafeNormalize4(a) _dSafeNormalize4(a)
#define dNormalize3(a) _dNormalize3(a)
#define dNormalize4(a) _dNormalize4(a)
#endif // defined(__ODE__)
/*
* given a unit length "normal" vector n, generate vectors p and q vectors
* that are an orthonormal basis for the plane space perpendicular to n.
* i.e. this makes p,q such that n,p,q are all perpendicular to each other.
* q will equal n x p. if n is not unit length then p will be unit length but
* q wont be.
*/
ODE_API void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q);
/* Makes sure the matrix is a proper rotation */
ODE_API void dOrthogonalizeR(dMatrix3 m);
#ifdef __cplusplus
}
#endif
inline bool _dequal(const double &_a, const double &_b,
const double &_epsilon = 1e-6)
{
return std::fabs(_a - _b) <= _epsilon;
}
inline bool _dequal(const float &_a, const float &_b,
const float &_epsilon = 1e-6)
{
return std::fabs(_a - _b) <= _epsilon;
}
inline bool _dequal(const double &_a, const float &_b,
const float &_epsilon = 1e-6)
{
return std::fabs(static_cast<float>(_a) - _b) <= _epsilon;
}
inline bool _dequal(const float &_a, const double &_b,
const float &_epsilon = 1e-6)
{
return std::fabs(_a - static_cast<float>(_b)) <= _epsilon;
}
#endif