diff --git a/quick_start_clean/readmes/quick_start.md b/quick_start_clean/readmes/quick_start.md index ae9fa50..ba87158 100644 --- a/quick_start_clean/readmes/quick_start.md +++ b/quick_start_clean/readmes/quick_start.md @@ -81,7 +81,7 @@ conda activate fm-9g # 需要先查看CUDA版本,根据CUDA版本挑选合适的pytorch版本 conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia -9.安装OpenDelta +4.安装OpenDelta # 也可以在官网上下载好安装包后进行安装 # 官网地址为:https://github.com/thunlp/OpenDelta pip install opendelta @@ -89,10 +89,10 @@ pip install opendelta 5. 安装BMTrain pip install bmtrain==1.0.0 -5. 安装flash-attn +6. 安装flash-attn pip install flash-attn==2.4.2 -6. 安装其他依赖包 +7. 安装其他依赖包 pip install einops pip install pytrie pip install transformers @@ -100,13 +100,13 @@ pip install matplotlib pip install h5py pip install sentencepiece -7.安装tensorboard +8.安装tensorboard pip install protobuf==3.20.0 #protobuf版本过高时无法适配tensorboard pip install tensorboard pip install tensorboardX -8.安装vllm(模型推理) +9.安装vllm(模型推理) 我们提供python3.8、python3.10版本的vllm安装包,相关依赖均已封装,可直接安装后执行推理: [vllm-0.5.0.dev0+cu122-cp38-cp38-linux_x86_64.whl](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/vllm-0.5.0.dev0%2Bcu122-cp38-cp38-linux_x86_64.whl) [vllm-0.5.0.dev0+cu122-cp310-cp310-linux_x86_64.whl](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/vllm-0.5.0.dev0%2Bcu122-cp310-cp310-linux_x86_64.whl) @@ -115,10 +115,10 @@ pip install tensorboardX ## 开源模型 1. 8B的百亿SFT模型,v2版本是在v1基础上精度和对话能力的优化模型,下载链接: - [8b_sft_model_v1](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/checkpoints-epoch-1.tar.gz), [8b_sft_model_v2](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/sft_8b_v2.zip) +[8b_sft_model_v2(.pt格式)](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/sft_8b_v2.zip), [8b_sft_model_v2(.bin格式)](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/8b_sft_model.tar) 2. 端侧2B模型,下载链接: -[2b_sft_model](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/fm9g_2b_hf_models.tar.gz) +[2b_sft_model(.pt格式)](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/fm9g_2b_hf_models.tar.gz), [2b_sft_model(.bin格式)](https://qy-obs-6d58.obs.cn-north-4.myhuaweicloud.com/2b_sft_model.tar) ## 数据处理流程 ### 单个数据集处理 @@ -432,7 +432,7 @@ prompts = [ # temperature越大,生成结果的随机性越强,top_p过滤掉生成词汇表中概率低于给定阈值的词汇,控制随机性 sampling_params = SamplingParams(temperature=0.8, top_p=0.95) -# 初始化语言模型 +# 初始化语言模型,需注意加载的是.bin格式模型 llm = LLM(model="../models/9G/", trust_remote_code=True) # 根据提示生成文本 @@ -449,7 +449,7 @@ for output in outputs: 端侧2B模型: ``` python # 初始化语言模型,与Hugging Face Transformers库兼容,支持AWQ、GPTQ和GGUF量化格式转换 -llm = LLM(model="../models/FM9G/", tokenizer_mode="auto", trust_remote_code=True) +llm = LLM(model="../models/2b_sft_model/", tokenizer_mode="auto", trust_remote_code=True) ``` 8B百亿SFT模型: ``` python @@ -465,11 +465,12 @@ vLLM可以为 LLM 服务进行部署,这里提供了一个示例: 端侧2B模型: ```shell python -m vllm.entrypoints.openai.api_server \ - --model ../models/FM9G/ \ + --model ../models/2b_sft_model/ \ --tokenizer-mode auto \ --dtype auto \ --trust-remote-code \ --api-key CPMAPI +#同样需注意模型加载的是.bin格式 #与离线批量推理类似,使用端侧2B模型,tokenizer-mode为"auto" #dtype为模型数据类型,设置为"auto"即可 #api-key为可选项,可在此处指定你的api密钥