Compare commits

..

22 Commits
new ... FM_9G

Author SHA1 Message Date
p83651209 1033ad4a75 Update README.md 2024-11-12 13:41:57 +08:00
p83651209 b63fcef8d2 Update README.md 2024-11-12 12:22:21 +08:00
p83651209 db10b9114b Update README.md 2024-11-12 11:16:38 +08:00
p83651209 58a7967a98 Update inference.py 2024-11-03 20:04:38 +08:00
p83651209 cd1bdcf117 Add model_final_url.txt 2024-11-03 13:30:04 +08:00
p83651209 4c8196bc84 Delete model_final 2024-11-03 13:29:30 +08:00
p83651209 124160cb1e Add model_final 2024-11-03 12:49:21 +08:00
p83651209 b0406a26bb Update README.md 2024-11-02 17:48:43 +08:00
p83651209 cc5b9a5ad8 Update README.md 2024-11-02 17:00:02 +08:00
p83651209 9441c81244 Update README.md 2024-11-02 16:54:13 +08:00
p83651209 ed4e38ea65 ADD file via upload 2024-11-02 16:52:22 +08:00
p83651209 0ff927cf92 Delete LLaMA-Factory.zip 2024-11-02 16:51:52 +08:00
p83651209 8807057563 Update README.md 2024-11-02 16:34:20 +08:00
p83651209 5b57b159f2 ADD file via upload 2024-11-02 16:32:04 +08:00
p83651209 7519028f67 Delete sft_code.sh 2024-11-02 16:30:05 +08:00
p83651209 2f35baea6c ADD file via upload 2024-11-02 16:28:39 +08:00
p83651209 b6a00ea9ea ADD file via upload 2024-11-02 16:18:55 +08:00
p83651209 5858ade20b Update README.md 2024-11-02 16:18:09 +08:00
p83651209 defb7a8bdd ADD file via upload 2024-11-02 16:15:33 +08:00
p83651209 2b55eb9f69 Update README.md 2024-11-02 16:09:56 +08:00
p83651209 93ba858875 ADD file via upload 2024-11-02 14:51:31 +08:00
p83651209 6b868588e1 Update README.md 2024-11-02 14:49:03 +08:00
7 changed files with 4572 additions and 3 deletions

BIN
LLaMA-Factory.zip Normal file

Binary file not shown.

View File

@ -1,2 +1,27 @@
训练代码:
LLaMA-Factory
夸克网盘 docker链接https://pan.quark.cn/s/4cda395f13e8
(没有会员请联系我下载)
1.使用llama-factory对九格模型进行全参数微调。数据集见dataset
2.训练和推理都已验证无误在A100*8卡机器上。
docker 启动sudo docker run -it --runtime=nvidia --gpus all --shm-size=256g wjf:train
推理python inference.py
训练:
cd training
sh training.sh
3.推理使用多checkpoint、多次推理融合。
4.所有资料都已打包进docker只需要docker即可。
5.启动训练时将覆盖提交的checkpoint。
6.docker卡在数据处理可能是机器的问题尝试docker中输入
export NCCL_DEBUG=INFO
export NCCL_SHM_DISABLE=1
export NCCL_P2P_DISABLE=1
由于需要保存多个checkpoint请务必保证磁盘空间足够大于500G。
7.提交不易请有问题是及时联系我电话13121813131

278
inference.py Normal file
View File

@ -0,0 +1,278 @@
import json, torch, re, sys, subprocess
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel, StoppingCriteria
device = "cuda" # the device to load the model onto
from tqdm import tqdm
def exec_code(test):
with open("test_case.json", "r") as f:
test_cases = json.load(f)
right_num = 0
all_num = 0
package = "import os, sys, math, re, json, random\n"
for item, test_case in zip(test, test_cases):
if "```python\n" in item["raw_outputs"]:
matches = re.findall('```python(.*?)```', item["raw_outputs"], re.DOTALL)
if len(matches) == 1:
item["raw_outputs"] = matches[0]
else:
matches = re.findall('```python(.*?)assert', item["raw_outputs"], re.DOTALL)
if len(matches) == 1:
item["raw_outputs"] = matches[0]
else:
item["raw_outputs"] = item["raw_outputs"][item["raw_outputs"].index("python\n") + len("python\n"):]
print(item)
#break
code = item["raw_outputs"].replace("<|im_end|>", "").replace("</s>", "").replace("```", "").strip().rstrip("\n")
raw_code = code
codes = raw_code.split("\n")
last_line = 0
for index, line in enumerate(codes):
if " return" in line:
last_line = index
code = "\n".join(codes[:last_line+1])
'''
if raw_code != code:
print("\n--------------------------------------------------------\n", [raw_code], "\n--------------------------------------------------------\n")
print("clean:\n", [code], "\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n\n\n")
'''
with open('code_.py', 'w') as fout:
fout.write(package + code + "\n" + "\n".join(test_case["test_case"]))
batcmd = 'timeout 3 ' + sys.executable + ' code_.py'
try:
shell_output = subprocess.check_output(batcmd, shell=True).decode('utf8')
right_num += 1
item["result"] = "True"
except Exception as e:
print("++++++++++++++++++++++++++++++++++++++++++++++++++++\n", raw_code, "\n-----------------------------------------\n\n\n", package + code + "\n--------------------------\n" + "\n".join(test_case["test_case"]))
print("--------------------------------------------------------\n\n\nitem:", item)
print("e: ", e, "\n================================================\n")#, e, )
item["result"] = "False"
all_num += 1
item["raw_outputs"] = [code]
print(len(test), right_num, all_num, right_num / all_num)
with open(f'wjf_{model_path.replace("/", "-")}{right_num / all_num}.json', "w") as f:
json.dump(test, f, indent=4)
return test, right_num / all_num
def get_result(model, tokenizer):
test = []
with open("/mnt/disk2/home/wujianfeng/com/code/code_round4.jsonl", "r") as f:
#test = json.load(f)
for line in f:
test.append(json.loads(line))
all_score = 0
all_num = 0
test_num = 1000
from tqdm import tqdm
for example in tqdm(test[:]):
#print(example["question"])
example["question"] = example["question"].replace("'''", '"""')
ai_prefix = ""
if example["question"].split(" ")[0] == "Write":
question = example["question"][:example["question"].index("\n")].strip().rstrip()
test_case = example["question"][example["question"].index("\n"):].split("\n")
print("test_case: ", test_case)
function_name = test_case[1].split(" ")[1].split("(")[0]
ai_prefix = "def " + function_name
messages = [
{"role": "user", "content": question + "\n\n" + ("\n".join(test_case))}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
text += ai_prefix
example["test_case"] = test_case
else:
tmp = re.findall(r'"""(.*?)"""', example["question"], flags=re.DOTALL)[0].split("\n")
question = ""
for line in tmp:
line = line.strip().rstrip()
if len(line) == 0:
continue
#if "xample" in line and len(line) < 20:
# break
question += line + " "
code = re.sub(r'"""(.*?)"""', '', example["question"], flags=re.DOTALL).strip().rstrip()
ai_prefix = code
messages = [
{"role": "user", "content": question}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
text += ai_prefix
example["prompt"] = text
print("text: " , [text])
input_ids = tokenizer([text], return_tensors="pt").to(device).input_ids
output = model.generate(input_ids,
#top_p=1.0,
max_new_tokens=600,
#repetition_penalty=1.1 + t*0.01,
temperature=0.1,
#no_repeat_ngram_size = 5,
).squeeze()
output_str = tokenizer.decode(output[input_ids.shape[1]:])
output_str = ai_prefix + output_str
print("output_str:\n", output_str, "\n-----------------------------------------------------------------")
example["raw_outputs"] = output_str#re.findall(r'```python(.*?)```', output_str)
return test
def get_result_1(model, tokenizer):
test = []
with open("/mnt/disk2/home/wujianfeng/com/code/code_round4.jsonl", "r") as f:
#test = json.load(f)
for line in f:
test.append(json.loads(line))
all_score = 0
all_num = 0
test_num = 1000
from tqdm import tqdm
for example in tqdm(test[:]):
#print(example["question"])
messages = [
{"role": "user", "content": example["question"]}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
example["prompt"] = text
print("text: " , [text])
input_ids = tokenizer([text], return_tensors="pt").to(device).input_ids
output = model.generate(input_ids,
#top_p=1.0,
max_new_tokens=600,
#repetition_penalty=1.1 + t*0.01,
temperature=0.1,
#no_repeat_ngram_size = 5,
).squeeze()
output_str = tokenizer.decode(output[input_ids.shape[1]:])
print("output_str:\n", output_str, "\n-----------------------------------------------------------------")
example["raw_outputs"] = output_str#re.findall(r'```python(.*?)```', output_str)
return test
answers = {}
for model_path in [
"/mnt/disk2/home/wujianfeng/LLaMA-Factory/all/TACO/",
"/mnt/disk2/home/wujianfeng/LLaMA-Factory/all_new_2/CodeNet4Repair/",
"/mnt/disk2/home/wujianfeng/LLaMA-Factory/all_new_1/CodeExercise-Python-27k/",
]:
print("model_path: ", model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype="auto",
device_map=device,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
test = get_result(model, tokenizer)
test, score = exec_code(test)
answers[score] = test
test = get_result_1(model, tokenizer)
test, score = exec_code(test)
answers[score] = test
'''
import os
for path in os.listdir("./"):
if "home-wujianfeng" in path:
with open(path, "r") as f:
test = json.load(f)
answers[float(path.split(".")[-2].split("-")[-1])] = test
'''
answers = list(dict(sorted(answers.items())).values())
print("answers: ", answers)
right = 0
jiuge_right = 0
merge = []
for i in range(len(answers[0])):
#for i in range(2):
flag = 0
for answer in answers:
if answer[i]["result"] == "True":
right += 1
jiuge_right += 1
flag = 1
merge.append(answer[i])
break
if flag == 0:
merge.append(answers[0][i])
print(right / len(answers[0]), jiuge_right / len(answers[0]))
with open("wjf_jiuge.jsonl", "w") as f:
for item in merge:
item.pop("result")
f.write(json.dumps(item, ensure_ascii=False) + '\n')

14
model_final_url.txt Normal file
View File

@ -0,0 +1,14 @@
model_wight:通过百度网盘分享的文件:
链接https://pan.baidu.com/s/1paYNO7d5OYESuyw3BVo7Ew
提取码6666
#https://www.alipan.com/s/FTPWUSBuz7s
docker:
链接https://pan.baidu.com/s/1paYNO7d5OYESuyw3BVo7Ew
提取码6666
#https://www.alipan.com/s/FTPWUSBuz7s
train_data:
链接https://pan.baidu.com/s/1paYNO7d5OYESuyw3BVo7Ew
提取码6666
#https://www.alipan.com/s/FTPWUSBuz7s

1
src
View File

@ -1 +0,0 @@
undefined

4099
test_case.json Normal file

File diff suppressed because it is too large Load Diff

154
train.sh Normal file
View File

@ -0,0 +1,154 @@
#!/bin/bash
deepspeed --include localhost:0,1,2,3,4,5,6,7 --master_port 21666 src/train.py \
--stage sft \
--model_name_or_path /mnt/diskhd/Backup/DownloadModel/2b_sft_model/ \
--do_train \
--dataset TACO \
--template jiuge \
--finetuning_type full \
--output_dir TACO \
--per_device_train_batch_size 14 \
--gradient_accumulation_steps 6 \
--lr_scheduler_type cosine \
--logging_step 1 \
--save_steps 300 \
--lr_scheduler_type cosine_with_restarts \
--warmup_ratio 0.001 \
--optim adamw_torch \
--learning_rate 2e-5 \
--num_train_epochs 2.0 \
--plot_loss \
--bf16 \
--gradient_checkpointing \
--report_to tensorboard \
--deepspeed deepspeed_configs/zero2.json \
--cutoff_len 2048
deepspeed --include localhost:0,1,2,3,4,5,6,7 --master_port 21666 src/train.py \
--stage sft \
--model_name_or_path /mnt/diskhd/Backup/DownloadModel/2b_sft_model/ \
--do_train \
--dataset Tested-143k-Python-Alpaca \
--template jiuge \
--finetuning_type full \
--output_dir Tested-143k-Python-Alpaca \
--per_device_train_batch_size 14 \
--gradient_accumulation_steps 6 \
--lr_scheduler_type cosine \
--logging_step 1 \
--save_steps 300 \
--lr_scheduler_type cosine_with_restarts \
--warmup_ratio 0.001 \
--optim adamw_torch \
--learning_rate 2e-5 \
--num_train_epochs 2.0 \
--plot_loss \
--bf16 \
--gradient_checkpointing \
--report_to tensorboard \
--deepspeed deepspeed_configs/zero2.json \
--cutoff_len 2048
deepspeed --include localhost:0,1,2,3,4,5,6,7 --master_port 21666 src/train.py \
--stage sft \
--model_name_or_path /mnt/diskhd/Backup/DownloadModel/2b_sft_model/ \
--do_train \
--dataset UltraInteract_sft \
--template jiuge \
--finetuning_type full \
--output_dir UltraInteract_sft \
--per_device_train_batch_size 14 \
--gradient_accumulation_steps 6 \
--lr_scheduler_type cosine \
--logging_step 1 \
--save_steps 300 \
--lr_scheduler_type cosine_with_restarts \
--warmup_ratio 0.001 \
--optim adamw_torch \
--learning_rate 2e-5 \
--num_train_epochs 2.0 \
--plot_loss \
--bf16 \
--gradient_checkpointing \
--report_to tensorboard \
--deepspeed deepspeed_configs/zero2.json \
--cutoff_len 2048
deepspeed --include localhost:0,1,2,3,4,5,6,7 --master_port 21666 src/train.py \
--stage sft \
--model_name_or_path /mnt/diskhd/Backup/DownloadModel/2b_sft_model/ \
--do_train \
--dataset code_instructions_120k_alpaca \
--template jiuge \
--finetuning_type full \
--output_dir code_instructions_120k_alpaca \
--per_device_train_batch_size 14 \
--gradient_accumulation_steps 6 \
--lr_scheduler_type cosine \
--logging_step 1 \
--save_steps 300 \
--lr_scheduler_type cosine_with_restarts \
--warmup_ratio 0.001 \
--optim adamw_torch \
--learning_rate 2e-5 \
--num_train_epochs 2.0 \
--plot_loss \
--bf16 \
--gradient_checkpointing \
--report_to tensorboard \
--deepspeed deepspeed_configs/zero2.json \
--cutoff_len 2048
deepspeed --include localhost:0,1,2,3,4,5,6,7 --master_port 21666 src/train.py \
--stage sft \
--model_name_or_path /mnt/diskhd/Backup/DownloadModel/2b_sft_model/ \
--do_train \
--dataset CodeExercise-Python-27k \
--template jiuge \
--finetuning_type full \
--output_dir CodeExercise-Python-27k \
--per_device_train_batch_size 14 \
--gradient_accumulation_steps 6 \
--lr_scheduler_type cosine \
--logging_step 1 \
--save_steps 300 \
--lr_scheduler_type cosine_with_restarts \
--warmup_ratio 0.001 \
--optim adamw_torch \
--learning_rate 2e-5 \
--num_train_epochs 2.0 \
--plot_loss \
--bf16 \
--gradient_checkpointing \
--report_to tensorboard \
--deepspeed deepspeed_configs/zero2.json \
--cutoff_len 2048
deepspeed --include localhost:0,1,2,3,4,5,6,7 --master_port 21666 src/train.py \
--stage sft \
--model_name_or_path /mnt/diskhd/Backup/DownloadModel/2b_sft_model/ \
--do_train \
--dataset CodeNet4Repair \
--template jiuge \
--finetuning_type full \
--output_dir CodeNet4Repair \
--per_device_train_batch_size 14 \
--gradient_accumulation_steps 6 \
--lr_scheduler_type cosine \
--logging_step 1 \
--save_steps 300 \
--lr_scheduler_type cosine_with_restarts \
--warmup_ratio 0.001 \
--optim adamw_torch \
--learning_rate 2e-5 \
--num_train_epochs 2.0 \
--plot_loss \
--bf16 \
--gradient_checkpointing \
--report_to tensorboard \
--deepspeed deepspeed_configs/zero2.json \
--cutoff_len 2048