# coding=utf-8 # Copyright 2020 The OpenBMB team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse def add_model_config_args(parser: argparse.ArgumentParser): """Model arguments""" group = parser.add_argument_group("model", "model configuration") group.add_argument("--model-config", type=str, help="model configuration file") group.add_argument("--vocab", type=str, default=None, help="model vocabulary file") group.add_argument("--eps", type=float, default=1e-5, help="eps in layernorm") # group.add_argument("--qk_norm", action="store_true", default=False, help="qk layernorm") return parser def add_training_args(parser: argparse.ArgumentParser): """Training arguments.""" group = parser.add_argument_group("train", "training configurations") group.add_argument("--platform-config", type=str, default="platform_config.json", help="Path to platform config") group.add_argument("--dataset", type=str, default="dataset.json", help="Path to dataset") group.add_argument("--val-dataset", type=str, default="dataset.json", help="Path to val dataset") group.add_argument( "--load", type=str, default=None, help="Path to a directory containing a model checkpoint.", ) group.add_argument( "--load-grad", action="store_true", default=False, help="Load the gradient states", ) group.add_argument( "--grad-ckpt-num", type=int, default=0, help="grad file num (only work when --load-grad from files less than world-size )", ) group.add_argument( "--load-start-step", action="store_true", default=False, help="Load the step state from checkpoints", ) group.add_argument( "--save", type=str, default=None, help="Output directory to save checkpoints to.", ) group.add_argument( "--save-name", type=str, default=None, help="Output filename to save checkpoints to.", ) group.add_argument( "--save-model", type=str, default=None, help="Output directory to save model to.", ) group.add_argument( "--tensorboard", type=str, default=None, help="tensorboard directory", ) group.add_argument("--inspect-iters", type=int, default=1000, help="number of inspecting") group.add_argument("--batch-size", type=int, default=32, help="Data Loader batch size") group.add_argument("--num-micro-batches", type=int, default=16) group.add_argument("--clip-grad", type=float, default=1.0, help="gradient clipping") group.add_argument("--grad-accum", type=int, default=1, help="gradient accum steps") group.add_argument( "--train-iters", type=int, default=1000000, help="total number of iterations to train over all training runs", ) group.add_argument("--max-length", type=int, default=512, help="max length of input") group.add_argument("--min-length", type=int, default=None, help="only for speed test") group.add_argument("--seed", type=int, default=1234, help="random seed for reproducibility") # Learning rate. group.add_argument("--lr", type=float, default=1.0e-4, help="initial learning rate") group.add_argument("--lr_scheduler", type=str, default="cosine", help=" learning rate scheduler") group.add_argument("--weight-decay", type=float, default=1.0e-2, help="weight decay rate") group.add_argument("--loss-scale", type=float, default=65536, help="loss scale") group.add_argument("--max-loss-scale", type=float, default=float("inf"), help="loss scale") group.add_argument("--min-loss-scale", type=float, default=1, help="loss scale") group.add_argument("--loss-scale-steps", type=float, default=1024, help="loss scale") group.add_argument( "--warmup-iters", type=float, default=0.01, help="percentage of data to warmup on (.01 = 1% of all " "training iters). Default 0.01", ) group.add_argument( "--drop-iters", type=float, default=0.01, help="percentage of data to warmup on (.01 = 1% of all " "training iters). Default 0.01", ) group.add_argument("--lr-decay-iters", type=int, default=None, help="lr decay steps") group.add_argument("--start-step", type=int, default=0, help="step to start or continue training") group.add_argument("--concat-data", action="store_true", help="whether we concatenate the dialogues") group.add_argument("--offload", action="store_true", help="whether we use offload_adam") group.add_argument("--new-bmt", action="store_true", help="new bmt without ckpt") group.add_argument("--flash", default="none", choices=["none", "1d", "triton", "cuda"]) group.add_argument("--use-jfs-data", action="store_true", help="whether we use juicefs dataset") group.add_argument("--tp-size", default=1, type=int) group.add_argument("--pp-size", default=1, type=int) group.add_argument("--bf16", action="store_true", help="whether we use bf16") group.add_argument("--dataloader_num_threads", default=3, type=int, help="Only useful in indexed dataest.") group.add_argument("--dataloader_prefetch", default=200, type=int, help="Only useful in indexed dataest.") group.add_argument("--dataloader_num_workers", default=4, type=int, help="Only useful in indexed dataest.") group.add_argument("--dataloader_prefetch_factor", default=50, type=int, help="Only useful in indexed dataest.") group.add_argument( "--dataloader", default="indexed", type=str, help="dataloader type, 'indexed' for indexed dataset, 'normal' for normal dataset", ) group.add_argument("--stop_when_end", default=0, type=int, help="Whether to stop training when we reach end_iter") group.add_argument( "--data_len_threshold", default=512, type=int, help="If the average length of a sequence is less than this int, mean the sample is biased. ", ) group.add_argument( "--only_run_dataloader", default=0, type=int, help="Whether to only run dataloader to check data. " ) group.add_argument( "--only_load_model", default=0, type=int, help="Whether to only load a model ckpt, without anything else." ) group.add_argument( "--load_dataloader_ckpt", default=1, type=int, help="Whether to only load a model ckpt, without anything else." ) group.add_argument( "--resume_no_optimze", default=0, type=int, help="The number of steps that does not add optimization after resume", ) group.add_argument( "--parallel_load_datastate", default=256, type=int, help="The number of parallel workers to load dataset state", ) group.add_argument( "--async_save", action="store_true", help="whether to save artifacts asynchronously", ) group.add_argument( "--drop_begin", default=-1, type=int, help="The number of steps that starts to drop lr" ) group.add_argument( "--drop_rate", default=0.5, type=float, help="The number rate" ) group.add_argument( "--use_checkpoint", default=1, type=int, help="Whether to use checkpointing." ) return parser def add_pretrain_args(parser: argparse.ArgumentParser): group = parser.add_argument_group("pretrain", "pretrain configurations") group.add_argument( "--save-iters", type=int, default=1000, help="number of iterations between saves", ) group.add_argument( "--log-dir", type=str, default=None, help="log directory", ) group.add_argument( "--worker-name", type=str, default=None, help="worker name", ) return parser def add_tokenizer_args(parser: argparse.ArgumentParser): group = parser.add_argument_group("tokenizer", "tokenizer configurations") group.add_argument( "--tokenizer_path", type=str, default="", help="tokenizer_path", ) return parser def add_finetune_args(parser: argparse.ArgumentParser): group = parser.add_argument_group("finetune", "finetune configurations") group.add_argument("--epoch", type=int, default=1, help="number of training epochs") group.add_argument("--task-name", type=str, default="task", help="name of training task") group.add_argument("--save-epochs", type=int, default=1, help="number of training epochs between saves") group.add_argument("--save-steps", type=int, default=0, help="number of training steps between saves") group.add_argument( "--drop-last", action="store_true", default=False, help="drop data from each epoch that cannot be formed into a complete batch at the end", ) group.add_argument("--delta-tuning", action="store_true", default=False) group.add_argument("--each-epoch-save", default=False) group.add_argument("--train-task-id", type=int, default=-1) return parser def add_rhlf_args(parser: argparse.ArgumentParser): group = parser.add_argument_group("rhlf", "rhlf configurations") group.add_argument( "--load-reward", type=str, default=None, help="Path to reward model checkpoint.", ) group.add_argument("--actor-lr", type=float, default=1.0e-5, help="actor learning rate") group.add_argument("--critic-lr", type=float, default=1.0e-6, help="critic learning rate") group.add_argument("--actor-loss-scale", type=float, default=65536, help="actor loss scale") group.add_argument("--critic-loss-scale", type=float, default=65536, help="critic loss scale") group.add_argument("--avg-reward-bias", type=float, default=0, help="reward bias") group.add_argument("--actor-delay-step", type=int, default=0, help="actor delay step") group.add_argument("--entropy-coef", type=float, default=-1.0, help="coef of policy entropy") ## return parser def add_simple_rhlf_args(parser: argparse.ArgumentParser): group = parser.add_argument_group("simple_rhlf", "simple rhlf configurations") group.add_argument("--epoch", type=int, default=1, help="number of training epochs") group.add_argument("--sample-batch-size", type=int, default=32, help="Data Loader sample batch size") group.add_argument("--load-reward", type=str, default=None, help="Path to reward model checkpoint") group.add_argument("--avg-reward-bias", type=float, default=0, help="reward bias") group.add_argument("--sample-min-length", type=int, default=20, help="sample-min-length") group.add_argument("--sample-max-inp-length", type=int, default=1024, help="sample-max-inp-length") group.add_argument("--sample-max-length", type=int, default=64, help="sample-max-length") group.add_argument("--sample-repetition-penalty", type=float, default=1.05, help="sample-repetition-penalty") group.add_argument("--sample-temperature", type=float, default=1.0, help="sample-temperature") group.add_argument("--encode-max-length", type=int, default=1024, help="encode-max-length") group.add_argument("--generate-max-length", type=int, default=64, help="generate-max-length") group.add_argument("--value-loss-weight", type=float, default=0.1, help="value-loss-weight") group.add_argument("--ptx-loss-weight", type=float, default=0.001, help="ptx-loss-weight") group.add_argument("--save-epochs", type=int, default=1, help="number of training epochs between saves") ## return parser def add_feedback_learning_args(parser: argparse.ArgumentParser): group = parser.add_argument_group("rrhf", "rrhf configurations") group.add_argument("--length-penalty", type=float, default=1.0, help="length_penalty") group.add_argument("--feedback-weight", type=float, default=1.0, help="feedback_weight") group.add_argument("--sample-num", type=int, default=6, help="sample_num") group.add_argument("--dpo-beta", type=float, default=1.0, help="dpo_beta") group.add_argument("--stable-alignment-margin", type=float, default=1.0, help="stable_alignment_margin") group.add_argument("--feedback-learning-type", type=str, default="RRHF", help="feedback_learning_type") group.add_argument("--save-iters", type=int, default=1000, help="number of iterations between saves") ## return parser def add_model_change_args(parser: argparse.ArgumentParser): group = parser.add_argument_group("model_change", "model change during pretraining") group.add_argument("--strict_state_dict", type=int, default=1, help="strict_state_dict") ## return parser def add_log_args(parser: argparse.ArgumentParser): group = parser.add_argument_group("log", "log configurations") group.add_argument("--tensorboard_all_tasks", type=int, default=0, help="log") return parser def add_error_handle_args(parser: argparse.ArgumentParser): group = parser.add_argument_group("error_handle", "error_handle configurations") group.add_argument( "--ignore_cuda_oom", type=int, default=1, help="continue training by ingore the batch that causes oom" ) return parser def add_runtime_eval_args(parser: argparse.ArgumentParser): group = parser.add_argument_group("runtime eval args", "runtime evaluation by submitting a job") group.add_argument( "--runtime_eval", action="store_true", help="whether to use runtime_eval. Only if this is set to True, the following variables will be useful", ) group.add_argument("--eval_jeeves_auth", type=str, default="", help="auth, press f12 on jeeves platform to get") group.add_argument("--eval_project_id", type=str, default=None, help="project id") group.add_argument("--eval_run_cmd", type=str, default="", help="cmd for eval") group.add_argument( "--eval_git_path", type=str, default="git@git.in.zhihu.com:luca/llm-bench.git", help="git path of evaluation code", ) group.add_argument("--eval_git_branch", type=str, default="master", help="git branch of evaluation code") group.add_argument("--eval_node_num", type=int, default=1, help="using 1 node to evaluate") group.add_argument("--eval_gpu_num", type=int, default=1, help="using 1 gpu per node to evaluate") group.add_argument("--eval_tasks_config", type=str, default="", help="evaluate tasks' config") group.add_argument("--eval_model_backend", default="torch", type=str, help="model_backend") group.add_argument( "--eval_at_start", action="store_true", help="whether to eval at the first epoch, default to false" ) return parser def add_reward_args(parser: argparse.ArgumentParser): group = parser.add_argument_group("reward", "reward configurations") group.add_argument("--load-all", type=str, default=None, help="Path to a directory containing a model checkpoint.") ## return parser def add_long_context_extend_args(parser: argparse.ArgumentParser): """long context extending arguments.""" group = parser.add_argument_group("long_context_extend", "long context extend configurations") group.add_argument("--pose-prob", default=0.0, type=float, help="Sample-level PoSE probability") group.add_argument( "--pose-scaling-factor", default=1.0, type=float, help="PoSE scaling factor, simulate input length = max_length * pose_scaling_factor", ) group.add_argument( "--rope-scaling-type", default="", type=str, choices=["Linear", "NTK-aware", "Dynamic NTK", "NTK-by-parts", "YaRN", ""], help="Context scaling type", ) group.add_argument("--rope-scaling-factor", default=1, type=int, help="Context scaling factor") group.add_argument( "--orig-max-length", default=8192, type=int, help="Original context length before context extending" ) return parser def get_args( pretrain: bool = False, finetune: bool = False, rhlf: bool = False, simple_rlhf: bool = False, feedback_learning: bool = False, reward: bool = False, ): parser = argparse.ArgumentParser() parser = add_model_config_args(parser) # config file need to be exported with model/ckpt parser = add_training_args(parser) if pretrain: parser = add_pretrain_args(parser) parser = add_runtime_eval_args(parser) parser = add_tokenizer_args(parser) parser = add_log_args(parser) parser = add_error_handle_args(parser) parser = add_model_change_args(parser) if finetune: parser = add_finetune_args(parser) if rhlf: parser = add_rhlf_args(parser) if simple_rlhf: parser = add_simple_rhlf_args(parser) if feedback_learning: parser = add_feedback_learning_args(parser) if reward: parser = add_reward_args(parser) parser = add_long_context_extend_args(parser) args = parser.parse_args() return args