forked from jiuyuan/InfiniTensor
Add: reshape/flatten/identity OP and cuda kernel (#34)
* ADD:reshape/flatten/identity operators and cuda kernel. fix: use cudaMemcpyAsync clang format. ADD flatten/identity operator. add test for reshape. ADD: reshape operator and cuda kernel. * Fix: seperate CUDA tests & remove old header Co-authored-by: Liyan Zheng <liyan-zheng@outlook.com>
This commit is contained in:
parent
2f8f706f1c
commit
9032cbb973
|
@ -27,6 +27,7 @@ enum class OpType {
|
|||
Gather,
|
||||
ReduceMean,
|
||||
Reshape,
|
||||
Flatten,
|
||||
Identity,
|
||||
// element wise
|
||||
BatchNorm = 200,
|
||||
|
|
|
@ -0,0 +1,55 @@
|
|||
#pragma once
|
||||
|
||||
#include "core/operator.h"
|
||||
|
||||
namespace infini {
|
||||
class ReshapeObj : public OperatorObj {
|
||||
Shape dims;
|
||||
|
||||
public:
|
||||
ReshapeObj(GraphObj *graph, Tensor input, Tensor output, const Shape &dims);
|
||||
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
class FlattenObj : public OperatorObj {
|
||||
|
||||
public:
|
||||
FlattenObj(GraphObj *graph, Tensor input, Tensor output);
|
||||
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
class IdentityObj : public OperatorObj {
|
||||
|
||||
public:
|
||||
IdentityObj(GraphObj *graph, Tensor input, Tensor output);
|
||||
|
||||
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
|
||||
|
||||
std::string toString() const override;
|
||||
int numInputs() const override { return 1; }
|
||||
int numOutputs() const override { return 1; }
|
||||
|
||||
private:
|
||||
vector<int> getWorkloadVector() const override;
|
||||
vector<int> getOpAttrVector() const override;
|
||||
};
|
||||
|
||||
} // namespace infini
|
|
@ -112,7 +112,7 @@ bool TensorObj::equalData(const Tensor &rhs) const {
|
|||
IT_ASSERT(getDType() == rhs->getDType());
|
||||
IT_ASSERT(runtime->isCpu());
|
||||
IT_ASSERT(rhs->getRuntime()->isCpu());
|
||||
if (shape != rhs->getDims())
|
||||
if (size() != rhs->size())
|
||||
return false;
|
||||
if (getDType() == DataType::UInt32)
|
||||
return equalDataImpl(getRawDataPtr<uint32_t *>(),
|
||||
|
|
|
@ -4,12 +4,12 @@
|
|||
#include "cuda/cuda_runtime.h"
|
||||
|
||||
namespace infini {
|
||||
class ElementWiseCudnn : public Kernel {
|
||||
class ElementWiseCudnn : public CudaKernelWithoutConfig {
|
||||
virtual cudnnOpTensorOp_t getOpType() const = 0;
|
||||
virtual tuple<float, float, float> getAlphBeta() const {
|
||||
return {1.f, 1.f, 0.f};
|
||||
}
|
||||
void compute(const Operator &_op, const PerfRecord &record,
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto op = as<ElementWiseObj>(_op);
|
||||
auto context = dynamic_cast<const CudaRuntimeObj *>(_context);
|
||||
|
@ -58,18 +58,6 @@ class ElementWiseCudnn : public Kernel {
|
|||
checkCudnnError(cudnnDestroyTensorDescriptor(cDesc));
|
||||
checkCudnnError(cudnnDestroyOpTensorDescriptor(opDesc));
|
||||
}
|
||||
|
||||
void compute(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
compute(_op, {}, _context);
|
||||
}
|
||||
// Premise: op is idempotent since it is called multiple times.
|
||||
PerfRecord tune(const Operator &_op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto context = dynamic_cast<const CudaRuntimeObj *>(_context);
|
||||
return make_ref<PerfRecordObj>(timeit([&]() { compute(_op, _context); },
|
||||
[&]() { context->sync(); }));
|
||||
}
|
||||
};
|
||||
|
||||
class AddCudnn : public ElementWiseCudnn {
|
||||
|
|
|
@ -0,0 +1,21 @@
|
|||
#include "cuda/cuda_kernel_wihtout_config.h"
|
||||
|
||||
namespace infini {
|
||||
class CopyCuda : public CudaKernelWithoutConfig {
|
||||
void compute(const Operator &op,
|
||||
const RuntimeObj *_context) const override {
|
||||
auto inData = op->getInputs(0)->getRawDataPtr<void *>();
|
||||
auto outData = op->getOutputs()[0]->getRawDataPtr<void *>();
|
||||
cudaMemcpyAsync(outData, inData, op->getInputs(0)->getBytes(),
|
||||
cudaMemcpyDeviceToDevice);
|
||||
}
|
||||
};
|
||||
// reshape/flatten/identity all act as copying from input to output.
|
||||
REGISTER_KERNEL(Device::CUDA, OpType::Reshape, DataType::Float32, CopyCuda,
|
||||
"Reshape_CUDA_Float32");
|
||||
REGISTER_KERNEL(Device::CUDA, OpType::Flatten, DataType::Float32, CopyCuda,
|
||||
"Flatten_CUDA_Float32");
|
||||
REGISTER_KERNEL(Device::CUDA, OpType::Identity, DataType::Float32, CopyCuda,
|
||||
"Identity_CUDA_Float32");
|
||||
|
||||
} // namespace infini
|
|
@ -0,0 +1,104 @@
|
|||
#include "operators/reshape.h"
|
||||
|
||||
namespace infini {
|
||||
ReshapeObj::ReshapeObj(GraphObj *graph, Tensor input, Tensor output,
|
||||
const Shape &dims)
|
||||
: OperatorObj(OpType::Reshape, {input}, {output}), dims(dims) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> ReshapeObj::inferShape(const TensorVec &inputs) const {
|
||||
size_t size = 1;
|
||||
for (size_t i = 0; i < dims.size(); ++i)
|
||||
size *= dims.at(i);
|
||||
if (size != inputs[0]->size())
|
||||
return {};
|
||||
|
||||
return {{dims}};
|
||||
}
|
||||
|
||||
std::string ReshapeObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << "Reshape[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << vecToString(inputs[0]->getDims()) << ",";
|
||||
os << "dims=" << vecToString(dims) << ",";
|
||||
os << "input=" << inputs[0]->getGuid() << ",";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> ReshapeObj::getWorkloadVector() const {
|
||||
vector<int> ret = inputs[0]->getDims();
|
||||
ret.insert(ret.end(), dims.begin(), dims.end());
|
||||
ret.emplace(ret.begin(), enum_to_underlying(type));
|
||||
return ret;
|
||||
}
|
||||
vector<int> ReshapeObj::getOpAttrVector() const {
|
||||
vector<int> ret = dims;
|
||||
ret.emplace(ret.begin(), enum_to_underlying(type));
|
||||
return ret;
|
||||
}
|
||||
|
||||
FlattenObj::FlattenObj(GraphObj *graph, Tensor input, Tensor output)
|
||||
: OperatorObj(OpType::Flatten, {input}, {output}) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> FlattenObj::inferShape(const TensorVec &inputs) const {
|
||||
int size = 1;
|
||||
auto dims = getInputs(0)->getDims();
|
||||
for (size_t i = 0; i < dims.size(); ++i)
|
||||
size *= dims.at(i);
|
||||
|
||||
return {{{size}}};
|
||||
}
|
||||
|
||||
std::string FlattenObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << "Flatten[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << vecToString(inputs[0]->getDims()) << ",";
|
||||
os << "input=" << inputs[0]->getGuid() << ",";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> FlattenObj::getWorkloadVector() const {
|
||||
vector<int> ret = inputs[0]->getDims();
|
||||
ret.emplace(ret.begin(), enum_to_underlying(type));
|
||||
return ret;
|
||||
}
|
||||
|
||||
vector<int> FlattenObj::getOpAttrVector() const {
|
||||
return {enum_to_underlying(type)};
|
||||
}
|
||||
|
||||
IdentityObj::IdentityObj(GraphObj *graph, Tensor input, Tensor output)
|
||||
: OperatorObj(OpType::Identity, {input}, {output}) {
|
||||
IT_ASSERT(checkValid(graph));
|
||||
}
|
||||
|
||||
optional<vector<Shape>> IdentityObj::inferShape(const TensorVec &inputs) const {
|
||||
return {{getInputs(0)->getDims()}};
|
||||
}
|
||||
|
||||
std::string IdentityObj::toString() const {
|
||||
std::ostringstream os;
|
||||
os << "Identity[" << getGuid() << "]";
|
||||
os << "(";
|
||||
os << vecToString(inputs[0]->getDims()) << ",";
|
||||
os << "input=" << inputs[0]->getGuid() << ",";
|
||||
os << "output=" << outputs[0]->getGuid() << ")";
|
||||
return os.str();
|
||||
}
|
||||
|
||||
vector<int> IdentityObj::getWorkloadVector() const {
|
||||
vector<int> ret = inputs[0]->getDims();
|
||||
ret.emplace(ret.begin(), enum_to_underlying(type));
|
||||
return ret;
|
||||
}
|
||||
vector<int> IdentityObj::getOpAttrVector() const {
|
||||
return {enum_to_underlying(type)};
|
||||
}
|
||||
} // namespace infini
|
|
@ -0,0 +1,98 @@
|
|||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "cuda/cuda_runtime.h"
|
||||
#include "cuda/cuda_utility.h"
|
||||
#include "operators/reshape.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
TEST(CUDA_Reshape, run) {
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor icpu =
|
||||
make_ref<TensorObj>(Shape{2, 3, 3, 4}, DataType::Float32, cpuRuntime);
|
||||
icpu->dataMalloc();
|
||||
icpu->setData(IncrementalGenerator());
|
||||
|
||||
// Build CUDA graph
|
||||
Graph g = make_ref<GraphObj>(cudaRuntime);
|
||||
auto i = g->cloneTensor(icpu);
|
||||
auto op = g->addOp<ReshapeObj>(i, nullptr, Shape{3, 2, 4, 3});
|
||||
|
||||
// allocate CUDA memory
|
||||
g->dataMalloc();
|
||||
|
||||
// Execute on CUDA
|
||||
cudaRuntime->run(g);
|
||||
|
||||
// clone CUDA output to CPU
|
||||
auto o = op->getOutput();
|
||||
auto ocpu = o->clone(cpuRuntime);
|
||||
|
||||
// check results on CPU
|
||||
EXPECT_TRUE(ocpu->equalData(icpu));
|
||||
}
|
||||
|
||||
TEST(CUDA_Flatten, run) {
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor icpu =
|
||||
make_ref<TensorObj>(Shape{2, 3, 3, 4}, DataType::Float32, cpuRuntime);
|
||||
icpu->dataMalloc();
|
||||
icpu->setData(IncrementalGenerator());
|
||||
|
||||
// Build CUDA graph
|
||||
Graph g = make_ref<GraphObj>(cudaRuntime);
|
||||
auto i = g->cloneTensor(icpu);
|
||||
auto op = g->addOp<FlattenObj>(i, nullptr);
|
||||
|
||||
// allocate CUDA memory
|
||||
g->dataMalloc();
|
||||
|
||||
// Execute on CUDA
|
||||
cudaRuntime->run(g);
|
||||
|
||||
// clone CUDA output to CPU
|
||||
auto o = op->getOutput();
|
||||
auto ocpu = o->clone(cpuRuntime);
|
||||
|
||||
// check results on CPU
|
||||
EXPECT_TRUE(ocpu->equalData(icpu));
|
||||
}
|
||||
|
||||
TEST(CUDA_Identity, run) {
|
||||
Runtime cpuRuntime = CpuRuntimeObj::getInstance();
|
||||
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
||||
|
||||
// Build input data on CPU
|
||||
Tensor icpu =
|
||||
make_ref<TensorObj>(Shape{2, 3, 3, 4}, DataType::Float32, cpuRuntime);
|
||||
icpu->dataMalloc();
|
||||
icpu->setData(IncrementalGenerator());
|
||||
|
||||
// Build CUDA graph
|
||||
Graph g = make_ref<GraphObj>(cudaRuntime);
|
||||
auto i = g->cloneTensor(icpu);
|
||||
auto op = g->addOp<IdentityObj>(i, nullptr);
|
||||
|
||||
// allocate CUDA memory
|
||||
g->dataMalloc();
|
||||
|
||||
// Execute on CUDA
|
||||
cudaRuntime->run(g);
|
||||
|
||||
// clone CUDA output to CPU
|
||||
auto o = op->getOutput();
|
||||
auto ocpu = o->clone(cpuRuntime);
|
||||
|
||||
// check results on CPU
|
||||
EXPECT_TRUE(ocpu->equalData(icpu));
|
||||
}
|
||||
} // namespace infini
|
|
@ -0,0 +1,39 @@
|
|||
#include "core/graph.h"
|
||||
#include "core/kernel.h"
|
||||
#include "core/runtime.h"
|
||||
#include "operators/reshape.h"
|
||||
|
||||
#include "test.h"
|
||||
|
||||
namespace infini {
|
||||
|
||||
TEST(Reshape, ShapeInference) {
|
||||
Runtime runtime = CpuRuntimeObj::getInstance();
|
||||
{
|
||||
Graph g = make_ref<GraphObj>(runtime);
|
||||
Tensor i = g->addTensor({2, 3, 3, 4}, DataType::Float32);
|
||||
auto op = g->addOp<ReshapeObj>(i, nullptr, Shape{3, 2, 4, 3});
|
||||
EXPECT_EQ(op->getOutput()->getDims(), (Shape{3, 2, 4, 3}));
|
||||
}
|
||||
}
|
||||
TEST(Flatten, ShapeInference) {
|
||||
Runtime runtime = CpuRuntimeObj::getInstance();
|
||||
{
|
||||
Graph g = make_ref<GraphObj>(runtime);
|
||||
Tensor i = g->addTensor({2, 3, 3, 4}, DataType::Float32);
|
||||
auto op = g->addOp<FlattenObj>(i, nullptr);
|
||||
EXPECT_EQ(op->getOutput()->getDims(), (Shape{72}));
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Identity, ShapeInference) {
|
||||
Runtime runtime = CpuRuntimeObj::getInstance();
|
||||
{
|
||||
Graph g = make_ref<GraphObj>(runtime);
|
||||
Tensor i = g->addTensor({2, 3, 3, 4}, DataType::Float32);
|
||||
auto op = g->addOp<IdentityObj>(i, nullptr);
|
||||
EXPECT_EQ(op->getOutput()->getDims(), (Shape{2, 3, 3, 4}));
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace infini
|
Loading…
Reference in New Issue