//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ // PPPPP H H EEEEE N N GGGGG L EEEEE III + // P P H H E NN N G L E I + // PPPPP HHHHH EEEEE N N N G GG L EEEEE I + // P H H E N N N G G L E I + // P H H EEEEE N N GGGGG LLLLL EEEEE III + //------------------------------------------------------------------------+ // Platform for Hybrid Engineering Simulation of Flows + // China Aerodynamics Research and Development Center + // (C) Copyright, Since 2010 + //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ########################################################################### # Default parameters for Grid conversion # ########################################################################### // gridtype: Grid type for generation, conversion, reconstruction, merging. // 0 -- Unstructured grid. // 1 -- Structured grid. // 2 -- Hybrid grid, include both of unstructured and structured grid. // gridobj: Task type of grid treatment. // 0 -- Grid generation of typical case, such as cylinder, flat plate, etc. // 1 -- Grid conversion, from other grid data to PHenglEI, such as Fluent, CGNS. // 2 -- Grid refinement. // 3 -- Grid merging, merge two blocks into one block. // 5 -- Grid repairing, repair the original grid in order to remove the negative volume cells. // 6 -- Grid mirroring, mirror a symmetry grid to whole grid. // multiblock: Multi-block grid or not, only for structured grid conversion. // 0 -- Not. // 1 -- Yes. // grid_database_index: Case of typical case, only for gridobj=0. // 1 -- Laminar flat plate of subsonic flow. // 2 -- Laminar flat plate of supersonic flow. // 3 -- Turbulent flat plate of subsonic flow. // 4 -- Turbulent flat plate of supersonic flow. // iadapt: Adaptation number for unstructure grid. // iovrlap: Overlapping(overset) grid or not. // 0 -- NON-overlapping grid. // 1 -- Overlapping grid. // SymmetryFaceVector: The vector of symmetry face. // 0 -- X axis. // 1 -- Y axis. // 2 -- Z axis. int gridtype = 0; int gridobj = 1; int multiblock = 0; int grid_database_index = 3; int iadapt = 0; int iovrlap = 0; int SymmetryFaceVector = 1; // axisup: Type of Cartisien coordinates system, used in grid conversion. // 1 -- Y upward. (default) // 2 -- Z upward. int axisup = 1; // omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition". // 0 -- Interface. (default) // 1 -- Physical boundary condition, used in Hybrid solver. int omit_no_bound_bc = 0; //----------------------------------------------------------------------- # Grid data type # //----------------------------------------------------------------------- // from_gtype/to_gtype: Type of grid data type in grid conversion process. // -1 -- MULTI_TYPE. // 1 -- PHengLEI, *.fts. // 2 -- CGNS, *.cgns. // 3 -- Plot3D type of structured grid, *.dat/*.grd. // 4 -- Fieldview type of unstructured grid, *.dat/*.inp. // 5 -- Fluent, *.cas/*.msh. // 6 -- Ustar, mgrid.in. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 8 -- GMSH, *.msh. // dumpOldGrid: If dump out the old grid file. // 0 -- Not. (default) // 1 -- Yes. int from_gtype = 2; int to_gtype = 1; int dumpOldGrid = 0; //----------------------------------------------------------------------- # File path # //----------------------------------------------------------------------- // from_gfile: path of original data file for unstructure grid convert from. // out_gfile: path of target file for grid convert to, *.fts type of file usually. string from_gfile = "./grid/rae2822_hybrid2d.cas"; string out_gfile = "./grid/flat_laminr_133_85_2d.fts"; // ----------------- some advanced choices ------------------------------ // iunsteady: The Grid is for unsteady simulation or not. int iunsteady = 0; int iale = 0; // fileformat: Ustar Grid file format. // 0 -- BINARY. // 1 -- ASCII. int fileformat = 0; // .skl meaning skeleton. string original_grid_info_file = "./grid/FLUENT_test.skl"; // Parameters for hybrid solver. // mixgrid_uns: path of unstructure grid file for hybrid solver, *.fts type. // mixgrid_str: path of structure grid file for hybrid solver, *.fts type. // mixgrid_str_bc: path of structure grid boundary condition file for hybrid solver. string mixgrid_uns = "./grid/rae2822_uns2d_4.fts"; string mixgrid_str = "./grid/flat_laminr_133_85_2d.fts"; string mixgrid_str_bc = "./grid/flat_laminr_133_85_2d.inp"; // Some parameters for structured overlapping grid. int codeOfDigHoles = 1; string holeBasicFileName = "./oversetGridView/holeBasicFile.inp"; string holeFullFileName = "./oversetGridView/holeFullFile.dat"; string linkFileName = "./oversetGridView/topology.dat"; string zoneInverseFileName = "./oversetGridView/zoneInverseMapping.inp"; // ----------------- Adaptive Mesh Refine ------------------------------- // In this file, the original_grid_file is used of the partition part. // If use it dependently, abstract it here. string adapt_grid_file = "./grid/sphere_mixed_adapt1.fts"; string geometryFileName = "./grid/jsm.igs"; // geometryUnit: Geometry unit. // 1 -- meter. // 2 -- millimeter. // 3 -- inch. // exclusiveCase: Parallel projection exclusive case. // 0 -- NON case. // 1 -- JSM-C2-NPOFF case. // 2 -- CHNT. // projectOrgPoint: If the original wall points need to be projected or not. int geometryUnit = 1; int anisoRefine = 0; int isProject = 0; int readDist = 0; int isDeform = 0; int exclusiveCase = 0; // 0: NON case; 1: JSM-C2-NPOFF case; 2: CHNT. int projectOrgPoint = 0; // if project original wall points. // ----------------- RBF Parameters ------------------------------------- // symmetryPlane: Which symmetry plane is used in the mesh. // 0 -- without symmetry. // 1 -- plane of x=0. // 2 -- plane of y=0. // 3 -- plane of z=0. int numberOfReferenceCP = 10; double influenceRadius = 20; int symmetryPlane = 3; // 1: plane of x=0; 2: plane of y=0; 3: plane of z=0; // ----------------- Periodic Parameters -------------------------------- // Notice:Rotational periodicity only support rotation along the X axis! // periodicType: Which periodic boundary is used. // 0 -- without Periodic Boundary. // 1 -- Translational periodicity. // 2 -- Rotational periodicity. int periodicType = 0; double translationLength[] = [0.0,0.0,0.0]; double rotationAngle = 0.0; ######################################################################### # Default parameters for Partition # ######################################################################### // pgridtype: The grid type. // 0 -- unstruct grid. // 1 -- struct grid. // 2 -- refine structured grid. // maxproc: The number of partition zones that want to be divided into. int pgridtype = 0; int maxproc = 4; // traceMark: Trace mark or not, only for structured grid partition. // 0 -- Not. // 1 -- Yes. // blockIndexOfMark: the block index of mark, only for structured grid partition. // cellIndexOfMark: the cell index of mark, only for structured grid partition. int traceMark = 0; int blockIndexOfMark = 0; int cellIndexOfMark[] = [185,30,1]; //----------------------------------------------------------------------- # File path # //----------------------------------------------------------------------- // original_grid_file: Original grid file that want to be divided(PHengLEI type, *.fts). // partition_grid_file: Target partition grid file(PHengLEI type, *.fts). string original_grid_file = "./grid/sphere_mixed.fts"; string partition_grid_file = "./grid/sphere_mixed__4.fts"; // ------------------ Sompe advanced parameters ------------------------- // omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition". // 0 -- Interface. (default) // 1 -- Physical boundary condition, used in Hybrid solver. // npartmethod: Method of interface reconstruction, default is 1. // parallelPartMethod: Method of parallel partition, this is set only when execute parallel partition. It would be skipped when serial partition. // 1 -- Using ParMetis for homogeneous MPI. // 2 -- Using Metis for homogeneous MPI. // 3 -- using METIS partition for homogeneous OpenMP. // parmetisBalance: Used to specify the imbalance tolerance. // 1 -- perfect balance. // maxproc -- perfect imbalance. // 1.05 -- recommended. int omit_no_bound_bc = 0; int npartmethod = 1; int parallelPartitionMethod = 2; double parmetisBalance = 1.05; // numberOfMultigrid: Number of multi-grid levels, ONLY used for structured grid. // 1 -- single level. // 2 -- 2 level. // N -- N level, ..., et al. int numberOfMultigrid = 1; ######################################################################### # Default parameters for CFD simulation # ######################################################################### // maxSimuStep: The max simulation step, don't care simulation is restart or not. // intervalStepFlow: The step intervals for flow variables file 'flow.dat' saved. // intervalStepPlot: The step intervals for tecplot visual file 'tecflow.dat' saved. // intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved. // intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved. // intervalStepRes: The step intervals for residual file 'res.dat' saved. // ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow. // 0 -- no precondition process. (default, mach > 0.3) // 1 -- carry out precondition process. (mach number <= 0.3) int maxSimuStep = 20000; int intervalStepFlow = 1000; int intervalStepPlot = 1000; int intervalStepSample = 1000; int intervalStepForce = 100; int intervalStepRes = 10; int ifLowSpeedPrecon = 0; // compressible: // 0 -- incompressible flow. // 1 -- compressible flow. (default) int compressible = 1; //----------------------------------------------------------------------- # CFD Control Parameter # //----------------------------------------------------------------------- // refMachNumber: Mach number. // attackd: Angle of attack. // angleSlide: Angle of sideslip. // inflowParaType: The type of inflow parameters. // 0 -- the nondimensional conditions. // 1 -- the flight conditions. // 2 -- the experiment conditions. // 3 -- the subsonic boundary conditions. // refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // freestream_vibration_temperature: Dimensional freestream vibration temperature. // refDimensionalPressure: Dimensional reference pressure, or the total pressure only for the experiment condition. // height: Fly height, unit of km. // wallTemperature: Temprature of the solid wall, minus value is for adiabatic boundary condition. // dump_Q: Dump out thermal flux Q of solid wall. // 0 -- no dump out. // 1 -- dump out wall Q only. // 2 -- dump out wall Q & the typical position Q of ball. // 3 -- dump out wall Q & the typical position Q of cone. // 4 -- dump out wall Q & the typical position Q of double sphere. // gridScaleFactor: The customizable unit of the grid, default value is 1.0 for meter.Common dimensions like: // 1 dm = 0.1 m. // 1 cm = 0.01 m. // 1 mm = 0.001m. // 1 inch = 0.0254m. // 1 foot = 12 inches = 0.3048m. // 1 yard = 3 feet = 0.9144m. // forceRefenenceLength, forceRefenenceLengthSpanWise, forceRefenenceArea: Reference length, SpanWise length and area, independent of grid unit. // TorqueRefX, TorqueRefY, TorqueRefZ: Reference point, independent of grid unit. // radiationCoef: The radiation coefficient on wall, it is used to compute the radiation heat flux on wall when the boundary // condition is radiation equilibrium temperature, and 0.8 is the default value. double refMachNumber = 0.73; double attackd = 2.79; double angleSlide = 0.00; int inflowParaType = 0; double refReNumber = 6.5e6; double refDimensionalTemperature = 288.15; double freestream_vibration_temperature = 10000.00; //int inflowParaType = 1; //double height = 0.001; //int inflowParaType = 2; //double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2). //double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)). //int inflowParaType = 3; //int nsubsonicInlet = 1; //int nsubsonicOutlet = 1; //string inLetFileName = "./bin/subsonicInlet.hypara"; //string outLetFileName = "./bin/subsonicOutlet.hypara"; //double refDimensionalTemperature = 288.144; //double refDimensionalPressure = 1.01313E05; double wallTemperature = -1.0; int dump_Q = 0; double radiationCoef = 0.8; double gridScaleFactor = 1.0; double forceRefenenceLengthSpanWise = 1.0; // unit of meter. double forceRefenenceLength = 1.0; // unit of meter. double forceRefenenceArea = 1.0; // unit of meter^2. double TorqueRefX = 0.0; // unit of meter. double TorqueRefY = 0.0; // unit of meter. double TorqueRefZ = 0.0; // unit of meter. //----------------------------------------------------------------------- # Spatial Discretisation # //----------------------------------------------------------------------- #******************************************************************* # Struct Solver * #******************************************************************* // inviscidSchemeName: Spatial discretisation scheme of struct grid. // Using this when solve structered grid or hybrid. // -- "vanleer", "steger", "hlle", "lax_f". // -- "roe", "modified_roe". // -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw". // str_limiter_name: Limiter of struct grid. // -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth". // -- "nolim", no limiter. // -- "vanalbada_clz", clz supersonic version. string inviscidSchemeName = "roe"; string str_limiter_name = "vanalbada"; #******************************************************************* # UnStruct Solver or Common * #******************************************************************* // viscousType: Viscous model. // 0 -- Euler. // 1 -- Lamilar. // 2 -- Algebraic. // 3 -- 1eq turbulent. // 4 -- 2eq turbulent. // viscousName: Laminar or tubulent model. // -- "0eq-bl". // -- "1eq-sa". // -- "2eq-kw-menter-sst". // -- "2eq-kw-menter-bsl". // -- "2eq-kw-wilcox-1988". // -- "2eq-kw-wilcox-1998". // -- "2eq-kw-kok-tnt". // -- "2eq-kw-wilcox-2006". // -- "easm-kw-2003". // -- "easm-kw-2005". // DESType: Type of DES. // 0 -- RANS. (default) // 1 -- DES. // 2 -- DDES. // 3 -- IDDES. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // Using this when solve Unstructered grid or hybrid. // -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpwplus". // uns_limiter_name: Limiter of Unstruct grid. // -- "barth", "vencat", "vanleer", "minmod". // -- "vanalbada", "smooth", "nnd", "lpz", "1st". // -- "nolim", no limiter. // uns_vis_name: Discretisation method of viscous term. // -- "std", "test", "aver", "new1", "new2". // uns_gradient: Gradient reconstruction method. // -- "default", "ggcell", "ggnode", "lsq". // ivencat: Variation of vencat limiter. // 0 -- org method, it is independent of grid scale. // 1 -- new method, it is dependent of grid scale. // 4 -- Ustar limiter model, without grid size unitary. // 7 -- default used. // venkatCoeff: Cofficient of vencat, when using vencat limter. // limitVariables: Limit model (It is useful only if limitVector is 0). // 0 -- limit only for pressure and denstiny, then get the min value. // 1 -- limit for every variables, then get the min value. // limitVector: // 0 -- Each variable use the same limiter coefficient. // 1 -- Each variable use the respective limiter coefficients. // reconmeth: // 0 -- When reconstruct face value, Q+, Q- use respective limiter coefficients. // 1 -- Q+, Q- use the min limiter coefficients of left and right cell. // skewnessAngle: The skewness angle of grid cells. // roeEntropyFixMethod: Entropy fix (correction) method. // 1 -- direct fix, which limits the minimum eigenvalue directly. // 2 -- multi-dimensional fix, which is derived from structured solver and now is only valid for struct solver. // 3 -- Harten type, which is default used. // roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0. // It is used to scale the default Roe entropy fix coefficients. //int viscousType = 0; //string viscousName = "Euler"; //int viscousType = 1; //string viscousName = "laminar"; int viscousType = 3; string viscousName = "1eq-sa"; //int viscousType = 4; //string viscousName = "2eq-kw-menter-sst"; int DESType = 0; string uns_scheme_name = "roe"; string uns_limiter_name = "vencat"; string uns_vis_name = "test"; string gradientName = "ggnode"; int ivencat = 7; double venkatCoeff = 5.0; int reconmeth = 1; int limitVariables = 0; int limitVector = 0; double limit_angle = 0; double skewnessAngle = 60.0; int roeEntropyFixMethod = 3; double roeEntropyScale = 1.0; //----------------------------------------------------------------------- # Temporal Discretisation # //----------------------------------------------------------------------- // iunsteady: Steady or unsteady. // 0 -- steady. // 1 -- unsteay. // physicalTimeStep: The nondimensional physical time step. // ifStartFromSteadyResults: The unsteady simulation is start from steady flowfield or not, 0 is for no and else is for yes. // ifStaticsFlowField: Statistical variables for DES simulation. // startStatisticStep: Outer step when start statistics. // when the value is larger than "maxSimuStep", it is useless. // min_sub_iter: The min sub iteration of unsteady simulation. // max_sub_iter: The max sub iteration of unsteady simulation. // tol_sub_iter: The tolerance of sub iteration of unsteady simulation. // tscheme: Temporal Discretisation method. // 1 -- Runge-Kutta Multi-State. // 2 -- Point implicit. // 3 -- Full implicit. // 4 -- LU-SGS. // 5 -- Block LU-SGS. // 6 -- Jacobian iteration. // 7 -- Lower G-S iteration. // 8 -- Upper G-S iteration. // 9 -- Lower/Upper G-S iteration. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // CFLStart: Started cfl number. // CFLEnd: End cfl number. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // LUSGSTolerance: Sub iter tolerance of LU-SGS or Block LU-SGS. // ifLocalTimeStep: Time step method. // 0 --Local. // 1 --Global. // visl_min: Minimum value of laminar viscosity coefficient. // turbCFLScale: Turbulence model cfl number factor. // iale: Arbitrary Lagrangian-Eulerian method. // 0 -- no ALE method. // 1 -- ALE method for non-moving grids. // 2 -- ALE method for moving grids. // 3 -- ALE method for deforming grids. // wallFunctionType: The type of wall function to implement. // 0 -- no wall function. (default) // 1 -- standard wall function. // 2 -- Pab3D wall function. // RKStage: The number of Runge-Kutta step. // lamda: Cofficient of Runge-Kutta step. int iunsteady = 0; double physicalTimeStep = 0.01; int ifStartFromSteadyResults = 0; int ifStaticsFlowField = 0; int startStatisticStep = 800000; int min_sub_iter = 50; int max_sub_iter = 50; double tol_sub_iter = 0.01; int tscheme = 4; int iSimplifyViscousTerm = 1; int ifLocalTimeStep = 0; double CFLStart = 0.01; double CFLEnd = 10.0; int CFLVaryStep = 500; double ktmax = 1.0e10; int swapDq = 1; int nLUSGSSweeps = 1; double LUSGSTolerance = 0.01; int order = 2; double visl_min = 0.01; double turbCFLScale = 1.0; double timemax = 1.0e10; double dtsave = -1.0; int iale = 0; int ialetype = 2; int maxale = 10; double dtau = 0.001; double dtau_max = 1E-01; int wallFunctionType = 0; int RKStage = 2; double lamda[] = 0.5, 1.0; //int RKStage = 1; //double lamda[] = 1.0; //int RKStage = 4; //double lamda[] = [0.25, 0.33333333333, 0.5, 1.0]; //----------------------------------------------------------------------- # File In or Out # //----------------------------------------------------------------------- // numberOfGridGroups: The number of grid groups. // gridfile: The partitioned Grid file path, using relative path, // which is relative to the working directory. // IMPORTANT WARNING: The file index should be ignored, // e.g. if the partitioned grid is rae2822_hybrid2d__4_0.fts, // please use 'rae2822_hybrid2d__4.fts' here! // isPlotVolumeField: If dump out the field results to visulization. // walldistMethod: The method to compute wall distance. // 0 -- accurate but not fast enough. // 1 -- fast but not accurate enough. // 2 -- super fast but more non-accurate! // resSaveFile: The file path to save the residual convergence process, write data for every default (intervalStepRes) steps. // turbresfile: The file path to save the residual convergence process of turbulence, write data for every default (intervalStepRes) steps. // aircoeffile: The file path to save the aerodynamic force coefficients convergence process, write data for every default (intervalStepForce) steps. // restartNSFile: The file path to write restart flowfield variables, write data for every default (intervalStepFlow) steps. // turbfile: The file path to write restart flowfield variables of turbulence , write data for every default(intervalStepFlow) steps. // visualfile: The visualization file path of flowfield , write data for every default (intervalStepPlot) steps. // wall_aircoefile: The file path to save flowfield variables of wall, write data for every default steps. int numberOfGridGroups = 1; string gridfile = "./grid/rae2822_hybrid2d__4.fts"; int walldistMethod = 1; string resSaveFile = "results/res.dat"; string turbresfile = "results/turbres.dat"; string aircoeffile = "results/aircoef.dat"; string restartNSFile = "results/flow.dat"; string turbfile = "results/turb.dat"; string visualfile = "results/tecflow.plt"; string Qwall_file = "results/Qwall.dat"; string wall_aircoefile = "results/wall_aircoef.dat"; string probesflowfile = "results/sample.dat"; string surfacefile = ""; string wall_varfile = ""; string componentDefineFile = "bin/component.hypara"; string jetDefineFile = "bin/jet.hypara"; string componentforcefile = "results/component_aircoef.dat"; string overset_gridfile = "iblank.ovs"; int isPlotVolumeField = 0; // visualfileType: The file type of visualfile. // 0 -- Tecplot binary. // 1 -- Tecplot ASCII. int visualfileType = 1; // visualSlice: The slice of tecflow. // 0 -- Do not save slice data. // 1 -- comput and save it to sliceFile. // sliceAxis: Normal vector of slice. // 1 -- X_DIR. // 2 -- Y_DIR. // 3 -- Z_DIR. // slicePostion: Coordinate of slice. int visualSlice = 0; int sliceAxis = 1; double slicePostion = -0.5; string sliceFile = "results/Slice.plt"; // min-max box of the visual block. double lowerPlotFieldBox[] = [0.0 0.0 0.0]; double upperPlotFieldBox[] = [1.0 1.0 1.0]; // nVisualVariables: Number of variables want to be dumped for tecplot visualization. // visualVariables : Variable types dumped, listed as following: // -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6), // -- viscosityLaminar(7), viscosityTurbulent(8), // -- vorticity_x(9), vorticity_y(10), vorticity_z(11), vorticityMagnitude(12), // -- strain_rate(13), Q_criteria(14), Cp(15), timeStep(16), volume(17), // -- modeledTKE(18), modeleddissipationrate(19), SSTF1(20), SSTF2(21), vibration temperature(33), electron temperature(34), // -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44). // Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!! // Variables order must from small to big. int nVisualVariables = 8; int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15]; // dumpStandardModel: Dump many standard model data. // 1 -- Turbulent flat plate. int dumpStandardModel = 0; // ifSetProbesToMonitor: Set probes location to Monitor. // 0 -- Do not monitor. // 1 -- To monitor and save data to files. // probesDefineFile: probes location information file. // nProbeVariables: Number of variables want to be dumped for probes monitered. // probeVariables : Variable types dumped, listed as following: // -- density(0), u(1), v(2), w(3), pressure(4), temperature(5). // Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!! // probeVariables order must from small to big. int ifSetProbesToMonitor = 0; string probesDefineFile = "bin/probes_location.hypara"; int nProbeVariables = 6; int probeVariables[] = [0, 1, 2, 3, 4, 5]; //----------------------------------------------------------------------- # Turbulence Parameter # //----------------------------------------------------------------------- // turbInterval: Iteration number of turbulence. // kindOfTurbSource: Kinds of turbulent source. // 0 -- Original. // 1 -- Edwards. // 2 -- new. // mod_turb_res: If modify the residuals for the cells next to the wall or not, default is 0. int turbInterval = 1; int turb_vis_kind = 2; int kindOfTurbSource = 0; int mod_turb_res = 0; double turb_relax = 1.0; double turb_min_coef = 1.0e-1; double freeStreamViscosity = 1.0e-3; double muoo = 1.0e-1; double kwoo = 1.0; # maximum eddy viscosity (myt/my) max. double eddyViscosityLimit = 1.0e10; double sdilim = 1.0e20; double coef_kvist = 1.0; int monitor_vistmax = 0; //----------------------------------------------------------------------- # Other Parameter # //----------------------------------------------------------------------- // dg_high_order: // 0 -- generic order accuracy. // 1 -- high order accuracy. // iapplication: // 0 -- NS. // 1 -- MHD. // nm: Equation number of the physics, but is out of commision now. // 4 -- for 2D. // 5 -- for 3D. // nchem: // 0 -- without chemical reaction flow. // 1 -- the chemical reaction flow is considered. // nchemsrc: // 0 -- the source terms are not computed. // 1 -- the source terms are computed. // nchemrad: // 0 -- compute the spectrum radius without considering chemical reaction flow. // 1 -- compute the spectrum radius that need to count the contribution from chemical reaction flow. // ntmodel: The thermodynamic temperature model. // 1 -- One-temperature model. // 2 -- Two-temperature model. // 3 -- Three-temperature model. // catalyticCoef: // 0.0 -- full non-catalytic wall boundary condition. // 1.0 -- full catalytic wall boundary condition. // in range of (0.0, 1.0) -- partial catalytic condition, the value indicates the catalytic coefficient. // gasfile: Indicates the gas model, 9 models are provided, namely "Gu5", "Gu7", "Gu11", "Pa5", "Pa7", "Pa11", "DK5", "DK7", "DK11". // "Gu" -- indicates the Gupta Model, three-Type Models are embeded in the library, namely, the 5-species-6-reactions, the 7-species-9-reactions, the 11-species-20-reactions. // "Pa" -- indicates the Park Model, three-Type Models are embeded in the library, namely, the 5-species-17-reactions, the 7-species-22-reactions, the 11-species-48-reactions. // "DK" -- indicates the Dunn-Kang Model, three-Type Models are embeded in the library, namely, the 5-species-11-reactions, the 7-species-15-reactions, the 11-species-26-reactions. // For self-definition model, the gasfile is used to indicate the file path of the new gas model. // speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma. // initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName. // ifStartFromPerfectGasResults: The chemical reaction simulation is start from perfect gas flowfield or not, 0 is for no and else is for yes. int dg_high_order = 0; int iapplication = 0; int nm = 5; // MHD double bxoo = 0.0; double byoo = 0.0; double bzoo = 0.0; double refGama = 1.4; double prl = 0.72; double prt = 0.90; double sc_l = 0.5; double sc_t = 0.5; int nchem = 0; int nchemsrc = 1; int nchemrad = 1; int ntmodel = 1; int nChemicalFlowStep = 0; double catalyticCoef = 0.0; string gasfile = "DK5"; //string gasfile = "./chemical/Dunn-Kang_air5s11r.dat"; string speciesName = "O, O2, NO, N, N2"; string initMassFraction = "0.0, 0.23, 0.0, 0.0, 0.77"; //string speciesName = "O, O2, NO, N, NO+, N2, e-"; //string initMassFraction = "0.0, 0.23, 0.0, 0.0, 0.0, 0.77, 0.0"; //string speciesName = "O, O2, NO, N, O+, O2+, NO+, N+, N2+, N2, e-"; //string initMassFraction = "0.0, 0.23, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.77, 0.0"; int ifStartFromPerfectGasResults = 0; ######################################################################### // Multi-Grid parameters. // nMGLevel: The number of level of Multi-Grid. // <= 1 -- Single-level. // > 1 -- multi-level. // MGPreIteration: For each grid, the number of pre-smoothing steps. // n_post: For each grid, the number of post-smoothing steps. // MGCoarsestIteration: For the coarest grid the number of smoothing steps. // MGFasType: V-multi cycle or W-multi cycle. // 1 -- V-multi cycle. // 2 -- W-multi cycle. // flowInitStep: Flow initialization step, 0 - 500 is suggested. // Multi-Grid : Number of steps computing on coarse grid, during flow initialization. // Single-Grid: Number of steps computing using first-order with vanleer, during flow initialization. // mgCFLScale: CFL number enlarge times for coarse grid. // mprol: Multi-grid interpolation method, interpolation from coarse cell to fine grid. // 1 -- zero order. // 2 -- first-order. (default) // mgCorrectionLimit: Multi-grid correction limit. int nMGLevel = 1; int MGCoarsestIteration = 1; int MGPreIteration = 1; int MGFasType = 1; int n_post = 0; int flowInitStep = 100; int mprol = 2; double mgCFLScale = 1.0; double mgCorrectionLimit = 0.01; //--------------- Some parameter for turbulent model -------------------- // neasm: The variation of kw turbulent model. // ismooth_turb: Residual smooth for turb or not. // SSTProductType: The type of product term based on vorticity for SST. // SAProductType: The type of product term based on vorticity for SA. int neasm = -3; int SSTProductType = 0; int ismooth_turb = 0; int SAProductType = 2; // ----------------- Overset Grid parameter ----------------------------- int codeOfDigHoles = 1; int codeOfTurbulentModel = 0; string masterFileName = "./grid/searchFile.inp"; string holeBasicFileName = "./grid/holeBasicFile.inp"; string holeFullFileName = "./grid/holeFullFile.dat"; string linkFileName = "./grid/topology.dat"; string zoneInverseFileName = "./grid/zoneInverseMapping.inp"; ######################################################################### # High Order Struct Solver # ######################################################################### // ifvfd: // 0 -- NSSolverStruct using Finite Volume Method. // 1 -- NSSolverStruct using Finite Differ Method. // SolverStructOrder: Spatial discretisation order of NS equations with struct grid. // <= 2 -- finite volume method. // >= 3 -- finite difference order. (to be completed) // 0 -- default. // str_highorder_interpolation_epsilon: Epsilon in weighted interpolation, bigger epsilon, better convergence, // smaller epsilon, robuster for shock-detecting. // str_highorder_interpolation_type: // -- "classical", "test". // str_highorder_flux_name: // -- "roe", "steger". // structhighordergradient: // -- "conservation", "chain_rule". int ifvfd = 0; string str_highorder_solver = "WCNS"; int SolverStructOrder = 0; double str_highorder_interpolation_epsilon = 1.0e-6; string str_highorder_interpolation_type = "test"; string str_highorder_flux_name = "steger"; string structhighordergradient = "conservation"; double coefofstrflux = 0.5; double limitcoefofinterface = 0.0; // ----------------- Advanced choices ----------------------------------- // outtimesc: Time stepping scheme for the outer loop. // MUSCLCoefXk: The parameter of MUSCL interpolations, belongs to [-1, 1]. // -1 -- seconde-order fully-upwind differencing. // 0 -- seconde-order upwind-biased differencing. // 0.333333 -- third-order upwind-biased differencing. // 1 -- seconde-order central differencing. // MUSCLCoefXb: The limiter parameter. // 0 -- the effect of the limiter is cancelled, means the first-order interpolations. // allReduceStep: Iteration intervals for MPI AllReduce operation, default is 1. string outtimesc = "impbd2"; double MUSCLCoefXk = -1; double MUSCLCoefXb = 1.0; int allReduceStep = 1; // ---------------- ATP read -------------------------------------------- //@int inflowParaType = 0; //@double refReNumber = 2.329418E08; //@double refDimensionalTemperature = 288.144; //@double refDimensionalPressure = 1.01313E05; //@double height = -0.001; //@int nsubsonicInlet = 0; //@int nsubsonicOutlet = 0; //@string inLetFileName = "./bin/subsonicInlet.hypara"; //@string outLetFileName = "./bin/subsonicOutlet.hypara";