forked from jiuyuan/InfiniTensor
Copyout numpy接口 (#135)
* Add copy out numpy interface, delete returning buffer directly, add api test * Add dtype interface
This commit is contained in:
parent
4c321c8a91
commit
c6b82cfda0
4
Makefile
4
Makefile
|
@ -54,6 +54,10 @@ test-onnx:
|
|||
@echo
|
||||
python3 pyinfinitensor/tests/test_onnx.py
|
||||
|
||||
test-api:
|
||||
@echo
|
||||
python3 pyinfinitensor/tests/test_api.py
|
||||
|
||||
docker-build:
|
||||
docker build -f scripts/dockerfile/$(DOCKER_FILE) -t $(DOCKER_NAME) .
|
||||
|
||||
|
|
|
@ -44,6 +44,7 @@ class TensorBaseObj : public Object {
|
|||
}
|
||||
|
||||
DataType getDType() const { return dtype; }
|
||||
int getDTypeIndex() const { return dtype.getIndex(); }
|
||||
Runtime getRuntime() const { return runtime; }
|
||||
|
||||
// std::pair<Operator *, int> getOutputOfWithIndex();
|
||||
|
|
|
@ -0,0 +1,65 @@
|
|||
import os, unittest
|
||||
from onnx import TensorProto
|
||||
from pyinfinitensor import backend
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TestPythonAPI(unittest.TestCase):
|
||||
def test_copyin_numpy(self):
|
||||
dims = [2, 3, 5, 4]
|
||||
np_array = np.random.random(dims).astype(np.float32)
|
||||
handler = backend.GraphHandler(backend.cpu_runtime())
|
||||
tensor1 = handler.tensor(dims, TensorProto.FLOAT)
|
||||
tensor2 = handler.tensor(dims, TensorProto.FLOAT)
|
||||
handler.data_malloc()
|
||||
tensor1.copyin_numpy(np_array)
|
||||
tensor2.copyin_float(np_array.flatten().tolist())
|
||||
array1 = tensor1.copyout_float()
|
||||
array2 = tensor2.copyout_float()
|
||||
self.assertEqual(array1, array2)
|
||||
self.assertTrue(np.array_equal(np.array(array1).reshape(dims), np_array))
|
||||
|
||||
np_array = np.random.random(dims).astype(np.int64)
|
||||
handler = backend.GraphHandler(backend.cpu_runtime())
|
||||
tensor1 = handler.tensor(dims, TensorProto.INT64)
|
||||
tensor2 = handler.tensor(dims, TensorProto.INT64)
|
||||
handler.data_malloc()
|
||||
tensor1.copyin_numpy(np_array)
|
||||
tensor2.copyin_int64(np_array.flatten().tolist())
|
||||
array1 = tensor1.copyout_int64()
|
||||
array2 = tensor2.copyout_int64()
|
||||
self.assertEqual(array1, array2)
|
||||
self.assertTrue(np.array_equal(np.array(array1).reshape(dims), np_array))
|
||||
|
||||
def test_copyout_numpy(self):
|
||||
dims = [2, 3, 5, 4]
|
||||
np_array = np.random.random(dims).astype(np.float32)
|
||||
handler = backend.GraphHandler(backend.cpu_runtime())
|
||||
tensor1 = handler.tensor(dims, TensorProto.FLOAT)
|
||||
tensor2 = handler.tensor(dims, TensorProto.FLOAT)
|
||||
handler.data_malloc()
|
||||
tensor1.copyin_float(np_array.flatten().tolist())
|
||||
tensor2.copyin_float(np_array.flatten().tolist())
|
||||
array1 = np.array(tensor1.copyout_float()).reshape(dims)
|
||||
array2 = tensor2.copyout_numpy()
|
||||
self.assertTrue(np.array_equal(array2, np_array))
|
||||
self.assertTrue(np.array_equal(array1, array2))
|
||||
|
||||
np_array = np.random.random(dims).astype(np.float16)
|
||||
np_array[0, 0, 0, 0] = .1
|
||||
handler = backend.GraphHandler(backend.cpu_runtime())
|
||||
tensor1 = handler.tensor(dims, TensorProto.FLOAT16)
|
||||
handler.data_malloc()
|
||||
tensor1.copyin_numpy(np_array)
|
||||
array1 = tensor1.copyout_numpy()
|
||||
# Copy should be the same as original array
|
||||
self.assertTrue(np.array_equal(array1, np_array))
|
||||
# Modify the value so that tensorObj value changes
|
||||
np_array[0, 0, 0, 0] = 0.
|
||||
tensor1.copyin_numpy(np_array)
|
||||
# The copied-out array should not change
|
||||
self.assertFalse(np.array_equal(array1, np_array))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
|
@ -458,54 +458,6 @@ class TestStringMethods(unittest.TestCase):
|
|||
where = make_node("Where", ["x", "y", "con"], ["output"], name="where")
|
||||
make_and_import_model(make_graph([where], "where", [x, y, con], [output]))
|
||||
|
||||
def test_copyin(self):
|
||||
dims = [2, 3, 5, 4]
|
||||
np_array = np.random.random(dims).astype(np.float32)
|
||||
handler = backend.GraphHandler(backend.cpu_runtime())
|
||||
tensor1 = handler.tensor(dims, TensorProto.FLOAT)
|
||||
tensor2 = handler.tensor(dims, TensorProto.FLOAT)
|
||||
handler.data_malloc()
|
||||
tensor1.copyin_numpy(np_array)
|
||||
tensor2.copyin_float(np_array.flatten().tolist())
|
||||
array1 = tensor1.copyout_float()
|
||||
array2 = tensor2.copyout_float()
|
||||
self.assertEqual(array1, array2)
|
||||
self.assertTrue(np.array_equal(np.array(array1).reshape(dims), np_array))
|
||||
|
||||
np_array = np.random.random(dims).astype(np.int64)
|
||||
handler = backend.GraphHandler(backend.cpu_runtime())
|
||||
tensor1 = handler.tensor(dims, TensorProto.INT64)
|
||||
tensor2 = handler.tensor(dims, TensorProto.INT64)
|
||||
handler.data_malloc()
|
||||
tensor1.copyin_numpy(np_array)
|
||||
tensor2.copyin_int64(np_array.flatten().tolist())
|
||||
array1 = tensor1.copyout_int64()
|
||||
array2 = tensor2.copyout_int64()
|
||||
self.assertEqual(array1, array2)
|
||||
self.assertTrue(np.array_equal(np.array(array1).reshape(dims), np_array))
|
||||
|
||||
def test_to_numpy(self):
|
||||
dims = [2, 3, 5, 4]
|
||||
np_array = np.random.random(dims).astype(np.float32)
|
||||
handler = backend.GraphHandler(backend.cpu_runtime())
|
||||
tensor1 = handler.tensor(dims, TensorProto.FLOAT)
|
||||
tensor2 = handler.tensor(dims, TensorProto.FLOAT)
|
||||
handler.data_malloc()
|
||||
tensor1.copyin_float(np_array.flatten().tolist())
|
||||
tensor2.copyin_float(np_array.flatten().tolist())
|
||||
array1 = np.array(tensor1.copyout_float()).reshape(dims)
|
||||
array2 = np.array(tensor2)
|
||||
self.assertTrue(np.array_equal(array2, np_array))
|
||||
self.assertTrue(np.array_equal(array1, array2))
|
||||
|
||||
np_array = np.random.random(dims).astype(np.float16)
|
||||
handler = backend.GraphHandler(backend.cpu_runtime())
|
||||
tensor1 = handler.tensor(dims, TensorProto.FLOAT16)
|
||||
handler.data_malloc()
|
||||
tensor1.copyin_numpy(np_array)
|
||||
array1 = np.array(tensor1, copy=False)
|
||||
self.assertTrue(np.array_equal(array1, np_array))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
|
|
@ -306,6 +306,44 @@ void export_functions(py::module &m) {
|
|||
#undef FUNCTION
|
||||
}
|
||||
|
||||
// A helper function that converts DataType to python format string
|
||||
static std::string getFormat(DataType type) {
|
||||
std::string format;
|
||||
if (type == DataType::Float32) {
|
||||
format = py::format_descriptor<float>::format();
|
||||
} else if (type == DataType::Double) {
|
||||
format = py::format_descriptor<double>::format();
|
||||
} else if (type == DataType::Int32) {
|
||||
format = py::format_descriptor<int>::format();
|
||||
} else if (type == DataType::UInt32) {
|
||||
format = py::format_descriptor<uint32_t>::format();
|
||||
} else if (type == DataType::Int64) {
|
||||
format = py::format_descriptor<int64_t>::format();
|
||||
} else if (type == DataType::UInt64) {
|
||||
format = py::format_descriptor<uint64_t>::format();
|
||||
} else if (type == DataType::Int16) {
|
||||
format = py::format_descriptor<int16_t>::format();
|
||||
} else if (type == DataType::UInt16) {
|
||||
format = py::format_descriptor<uint16_t>::format();
|
||||
} else if (type == DataType::Int8) {
|
||||
format = py::format_descriptor<int8_t>::format();
|
||||
} else if (type == DataType::UInt8) {
|
||||
format = py::format_descriptor<uint8_t>::format();
|
||||
} else if (type == DataType::Bool) {
|
||||
format = py::format_descriptor<bool>::format();
|
||||
} else if (type == DataType::Float16 || type == DataType::BFloat16) {
|
||||
// Python uses "e" for half precision float type code.
|
||||
// Check the following link for more information.
|
||||
// https://docs.python.org/3/library/struct.html#format-characters
|
||||
format = "e";
|
||||
} else {
|
||||
throw std::runtime_error("Error converting TensorObj to "
|
||||
"Numpy: unsupported datatype.\n");
|
||||
}
|
||||
|
||||
return format;
|
||||
}
|
||||
|
||||
void init_graph_builder(py::module &m) {
|
||||
using Handler = GraphHandlerObj;
|
||||
|
||||
|
@ -326,6 +364,7 @@ void init_graph_builder(py::module &m) {
|
|||
py::buffer_protocol())
|
||||
.def("fuid", &TensorObj::getFuid, policy::automatic)
|
||||
.def("shape", &TensorObj::getDims, policy::move)
|
||||
.def("dtype", &TensorObj::getDTypeIndex, policy::automatic)
|
||||
.def("copyin_float", &TensorObj::copyin<float>, policy::move)
|
||||
.def("copyin_int32", &TensorObj::copyin<int32_t>, policy::move)
|
||||
.def("copyin_int64", &TensorObj::copyin<int64_t>, policy::move)
|
||||
|
@ -352,51 +391,24 @@ void init_graph_builder(py::module &m) {
|
|||
}
|
||||
self.copyin(data_np, self.getBytes());
|
||||
})
|
||||
// A buffer can be used to convert a TensorObj directly to Numpy array
|
||||
// without copy
|
||||
.def_buffer([](TensorObj &self) -> py::buffer_info {
|
||||
vector<size_t> stride_byte;
|
||||
for (int s : self.getStride()) {
|
||||
stride_byte.push_back(s * self.getDType().getSize());
|
||||
}
|
||||
// Return a Numpy array which copies the values of this tensor
|
||||
.def("copyout_numpy",
|
||||
[](TensorObj &self) -> py::array {
|
||||
vector<size_t> stride_byte;
|
||||
for (int s : self.getStride()) {
|
||||
stride_byte.push_back(s * self.getDType().getSize());
|
||||
}
|
||||
std::string format = getFormat(self.getDType());
|
||||
|
||||
std::string format;
|
||||
if (self.getDType() == DataType::Float32) {
|
||||
format = py::format_descriptor<float>::format();
|
||||
} else if (self.getDType() == DataType::Double) {
|
||||
format = py::format_descriptor<double>::format();
|
||||
} else if (self.getDType() == DataType::Int32) {
|
||||
format = py::format_descriptor<int>::format();
|
||||
} else if (self.getDType() == DataType::UInt32) {
|
||||
format = py::format_descriptor<uint32_t>::format();
|
||||
} else if (self.getDType() == DataType::Int64) {
|
||||
format = py::format_descriptor<int64_t>::format();
|
||||
} else if (self.getDType() == DataType::UInt64) {
|
||||
format = py::format_descriptor<uint64_t>::format();
|
||||
} else if (self.getDType() == DataType::Int16) {
|
||||
format = py::format_descriptor<int16_t>::format();
|
||||
} else if (self.getDType() == DataType::UInt16) {
|
||||
format = py::format_descriptor<uint16_t>::format();
|
||||
} else if (self.getDType() == DataType::Int8) {
|
||||
format = py::format_descriptor<int8_t>::format();
|
||||
} else if (self.getDType() == DataType::UInt8) {
|
||||
format = py::format_descriptor<uint8_t>::format();
|
||||
} else if (self.getDType() == DataType::Float16 ||
|
||||
self.getDType() == DataType::BFloat16) {
|
||||
// Python uses "e" for half precision float type code.
|
||||
// Check the following link for more information.
|
||||
// https://docs.python.org/3/library/struct.html#format-characters
|
||||
format = "e";
|
||||
} else {
|
||||
throw std::runtime_error("Error converting TensorObj to "
|
||||
"Numpy: unsupported datatype.\n");
|
||||
}
|
||||
py::array numpy_array(py::dtype(format), self.getDims(),
|
||||
nullptr);
|
||||
|
||||
return py::buffer_info(self.getRawDataPtr<void *>(),
|
||||
self.getDType().getSize(), format,
|
||||
self.getRank(), self.getDims(), stride_byte,
|
||||
true); // Read-only = true
|
||||
})
|
||||
// Copy data to the numpy array
|
||||
auto ptr = numpy_array.mutable_data();
|
||||
self.copyout(ptr, self.getBytes());
|
||||
|
||||
return numpy_array;
|
||||
})
|
||||
.def("has_target", &TensorObj::hasTarget, policy::automatic)
|
||||
.def("src", &TensorObj::getSource, policy::move)
|
||||
.def("printData", &TensorObj::printData, policy::automatic);
|
||||
|
|
Loading…
Reference in New Issue